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Abstract: Synchronous cell populations are commonly used for the analysis of various aspects of
cellular metabolism at specific stages of the cell cycle. Cell synchronization at a chosen cell cycle
stage is most frequently achieved by inhibition of specific metabolic pathway(s). In this respect,
various protocols have been developed to synchronize cells in particular cell cycle stages. In this
review, we provide an overview of the protocols for cell synchronization of mammalian cells based
on the inhibition of synthesis of DNA building blocks—deoxynucleotides and/or inhibition of DNA
synthesis. The mechanism of action, examples of their use, and advantages and disadvantages
are described with the aim of providing a guide for the selection of suitable protocol for different
studied situations.

Keywords: DNA replication; cell cycle; S phase; thymidylate synthase; deoxyribonucleotide triphos-
phates synthesis; ribonucleotide reductase; thymidine

1. Introduction

Cellular growth and the preparation of cells for division between two successive
cell divisions is known as the cell cycle. In eukaryotic cells, it includes two basic parts—
interphase and the M phase. Interphase, a part of the cell cycle when cells are duplicating
the genetic information, expressing proteins and growing, is further divided into three
separate phases—G1 (gap 1), S (synthetic) and G2 (gap 2). G1 and G2 are usually character-
ized by cell growth and high metabolic activity. The nuclear DNA is replicated during S
phase. M phase is divided into six stages. The first five stages, prophase, prometaphase,
metaphase, anaphase and telophase, are commonly known as mitosis. Mitosis involves
nuclear division (daughter chromosomes are separated). The sixth stage of the M phase is
known as cytokinesis and involves cytoplasmic division- (cell is divided into two daughter
cells). (Figure 1) [1,2].

The mammalian cell cycle is controlled by a subfamily of cyclin-dependent kinases
(CDKs), the activity of which is modulated by several activators (cyclins) and inhibitors
(Ink4, and Cip and Kip inhibitors) [3]. Progression through the cell cycle is controlled at
distinct checkpoints: the G0/G1 checkpoint (restriction point), G1 checkpoint (or G1–S
checkpoint), intra-S phase checkpoint, G2 checkpoint (or G2–M checkpoint) and mitosis-
associated spindle assembly checkpoint [4–6].

Cell cycle deregulation is a common feature of human cancer. Cancer cells frequently
display unscheduled proliferation, genomic instability (with increased DNA mutations
and chromosomal aberrations) and chromosomal instability (changes in chromosome
number) [3]. This fact, together with the necessity to specifically address various aspects
of cellular life during the cell cycle, has resulted in the development of many protocols
providing cell populations enriched in cells at the specific stage of the cell cycle.

Basically, two different approaches to obtain such cell populations are used: (i) the
treatment of asynchronous cell populations using special chemical agents, resulting in cell
arrest at the specific phase of the cell cycle or (ii) mechanical isolation of cells at specific
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phase of the cell cycle. While the first group of methods suffers from the fact that the used
treatments can result in unwanted effects on the cellular metabolism, the second group
frequently does not provide a sufficient number of cells in the particular cell cycle phase or
the synchrony of cell yield is low.

The first group includes methods based on the arrest of cells at the specific point in
the G1 phase (e.g., by serum or amino acid starvation); methods based on the blockade
of S phase (e.g., by thymidine or hydroxyurea); approaches based on the cell arrest in the
M phase (e.g., by nocodazole) or at the G2/M border (e.g., RO-3306; Figure 1). The second
group includes the isolation of mitotic cells mostly by mitotic shake off, the elutriation
method or isolation of cells using flow cytometry and cell sorters.

Figure 1. Overview of the cell cycle phases and some synchronization methods. * The stage of G1
phase at which lovastatin exerts its effect is not clear.

Here we summarize the possibilities of cell synchronization at the G1/S boundary by
substances impairing the deoxynucleotide metabolism, and consequently DNA replication,
by aphidicolin—an inhibitor of DNA polymerase α, and by mimosine—a plant aminoacid
exhibiting various effects on cell metabolism resulting in inhibition of DNA replication.
A brief overview of other frequently-used methods for cell synchronization is included
as well.

2. Metabolism of DNA Precursors

As the substances used for the synchronization of mammalian cells at the G1/S
boundary frequently target the synthesis of deoxynucleotides, a short introduction of
their metabolism in mammalian cells is given first. A complete overview of nucleotides’
metabolism is summarized, for example, in [7].

The deoxynucleotides are de novo generated from ribonucleotides at the level of
ribonucleotide diphosphates (adenosine diphosphate—ADP; guanosine 5′-diphosphate—
GDP; cytidine 5′-diphosphate—CDP, and uridine 5′-diphosphate—UDP) by reduction
at the 2’ position of the ribose subunit. This cytoplasmic reaction is catalyzed by the
enzyme ribonucleotide reductase (RNR, Figure 2). Its appearance during evolution was
a prerequisite for the transition from the “RNA world”, where RNA sufficed for both
catalysis and information transfer, to today’s interplay among DNA, RNA, and proteins [8].
A general overview of the occurrence, catalytic function, regulation, and evolution of RNRs
is reviewed, for example, in [9].
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Figure 2. Schematic figure of the RNR heterotetramer. Each R1 subunit has two allosteric (activity and
specificity sites) and one substrate binding site (catalytic site). The R2 subunits have a metal-oxygen
center with a tyrosyl radical. This radical can be transferred to the catalytic site.

RNR is heterotetramer composed of two R1 subunits and two R2 subunits (Figure 2).
During the S phase, the activity of RNR is greatly increased, while in the G1 phase its
activity is very low [9,10]. In this respect, R2 subunit transcription, but not R1 subunit
transcription, is repressed during G1 [9,11]. During mitosis, R2 subunits are degraded [12].
In resting cells (in G0 phase when cells are metabolically active but do not proliferate [1]),
the R2 subunit is not transcribed [13]. It was found that the quiescent cells contain a second
radical-providing small subunit, termed p53R2 with the same function as the homologous
R2 [14]. Some data indicate that in the case of DNA repair, p53R2 is transcriptionally
activated by p53 and translocates to the nucleus [14,15]. There, it can substitute for R2
forming a highly active RNR [10,16]. Besides its possible role in DNA repair, it was found
that the p53R2 subunit has an essential role in mitochondrial DNA replication [14,17–19].

The enzyme activity is tightly regulated by allosteric regulation which prevents exces-
sive concentration of each dNTP (deoxyribonucleotide triphosphate). R1 subunits contain
an activity site, a specificity site and a catalytic site [20,21]. The activity site regulates the
overall activity of the enzyme by binding of ATP (adenosine 5′-triphosphate; increase in the
overall activity) and dATP (deoxyadenosine 5′-triphosphate; decrease in the overall enzyme
activity (Figure 2) [19,22,23]. The specificity site regulates the substrate specificity. This site
binds dGTP (deoxyguanosine 5′-triphosphate), dTTP (deoxythymidine 5′-triphosphate),
ATP and dATP [20]. This binding determines the substrate preference [8,10,19,24,25]. Bind-
ing of ATP and dATP at the specificity site facilitates both CDP and UDP binding at the
catalytic site. Binding of dTTP at the specificity site allows GDP binding at the catalytic site
and dGTP binding at the specificity site facilitates ADP binding at the catalytic site [20]. Im-
portantly, when dTTP is bound at the specificity site, it inhibits the reduction of both CDP
and UDP [26]. After the ribonucleotide 5′ diphosphate reduction to deoxyribonucleotide
5′-diphosphate (Figure 3), the nucleoside diphosphate kinase catalyzes the transfer of the
terminal phosphate groups from 5′-triphosphate to 5′-diphosphate nucleotides [27].

dTMP (deoxythymidine 5′-monophosphate) is de novo synthesized by thymidylate
synthase (TS) from dUMP (deoxyuridine 5′-monophosphate). dUMP is generated mainly
by the enzyme dUTPase which hydrolyses dUTP (deoxyuridine 5′-triphosphate) to dUMP
and pyrophosphate. This reaction provides the substrate for thymidylate synthase and
concurrently eliminates dUTP from the DNA biosynthetic pathway [28]. TS catalyzes the
reductive methylation of dUMP to dTMP using N5,N10-methylenetetrahydrofolate as the
one-carbon methyl donor [29]. N5,N10-methylenetetrahydrofolate is oxidized during this
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reaction to dihydrofolate and has to be regenerated by dihydrofolate reductase (DHFR) and
serine hydroxymethyltransferase (Figure 4) [30]. The second pathway of dTTP synthesis is
a salvage pathway (Figure 4). In this case, thymidine is converted to dTMP by the enzyme
thymidine kinase. The thymidine comes from intracellular nucleic acid degradation or
from extracellular nucleosides circulating in the bloodstream [31].

Figure 3. Simplified scheme of dNTP production.

Figure 4. Simplified scheme of dTTP production by de novo synthesis or the salvage pathway.
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3. Targeting the Deoxynucleotide Metabolism and Its Use for Cell Synchronization
3.1. Thymidine

A high concentration of thymidine (Figure 5) is frequently used for cell synchroniza-
tion at the G1/S boundary. After the addition to the culture medium, thymidine enters the
cells and is rapidly converted to dTTP through a salvage pathway and its concentration in
cells dramatically increases [32]. The mechanism of the thymidine action is based on the
allosteric regulation of RNR enzyme when elevated dTTP concentration causes imbalance
in the dNTP pool and inhibits reduction of CDP to dCDP by RNR [26,33,34]. The thymidine
block can be reversed either by the thymidine removal or by the addition of deoxycyti-
dine [35,36]. Depletion of the nuclear dCTP pool after the increased dTTP concentration
has been observed, for example, in Chinese hamster ovary (CHO) cells. Simultaneously,
great increase in nuclear pools of dGTP and dATP was measured [37]. Similar data were
also obtained in Molm-13 cells [32]. On the other hand, incubation of L929 mouse cells
with 5 mM thymidine resulted only in an increase in the dTTP pool. The pools of dATP,
dGTP and dCTP were all reduced [38]. This shows that the reaction of cells after thymidine
treatment can vary substantially depending on the particular cell line.

Figure 5. Formulae of the substances used for cell synchronization and of folic acid.
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Typically, the thymidine concentrations used for cell synchronization are equal to, or
above, 2 mM (see for example in [34,39]). The incubation time should be little longer than
the sum of the lengths of G2, M and G1 phases. As cells in S phase could not transit this
phase without the thymidine block removal, the synchronization by one thymidine block
provides two populations of cells. One portion of cells is at G1/S boundary, the second one
is trapped throughout the S phase. Therefore, a second block is usually performed after the
release of cells from the first block. The time between release and the onset of the second
block should somewhat exceed the length of the S phase. A typical protocol for HeLa cells
can be found in [39,40].

3.2. Hydroxyurea

Hydroxyurea or hydroxycarbamide (Figure 5; HU) was first synthesized over a century
ago in 1869 [41]. It is primarily used as an antineoplastic and antiviral agent [42]. HU
inhibits RNR by directly reducing the diferric tyrosyl radical center in the smaller R2
subunit via a one-electron transfer from the drug [42]. HU thus inhibits production of
dNTPs (Figure 3), and subsequently, also DNA synthesis. Because of the reversibility
of its action, HU has commonly been used for cell synchronization. Its action is easily
reversed by changing of the growth medium for drug-free medium. The treatment of
cells by HU results in a decrease in purine pools in mammalian cells. Concerning the
pyrimidine pools, conflicting data are available [37,38,43,44]. The complicated, often
reciprocal, changes in individual dNTP pools occurring in HU-treated mammalian cells
may be due to the compensatory activities of the deoxyribonucleotide salvage pathways in
the higher eukaryotes [45].

As HU treatment also results in trapping DNA synthesizing cells in the S phase,
the HU treatment is typically combined with alternative synchronization protocols. One
example is the protocol comprising isoleucine starvation followed by incubation with
hydroxyurea [46]. In this case, cells are first incubated in a culture medium lacking
isoleucine for a time corresponding to the sum of the G1, S, G2 and M phases of the
particular cell line. According to Tobey and Crissman [46], large quantities of cells may be
reversibly arrested in early G1 by cultivation in an isoleucine-deficient medium. It was also
shown that these cells do not enter a state of gross biochemical imbalance [47]. Then, the
medium containing both isoleucine and hydroxyurea should be added, followed by the
incubation of cells for a time period slightly exceeding the G1 phase length. The cells are
released from the G1/S boundary after exchanging the medium for one without HU [46].

Instead of isoleucine starvation, serum deprivation (starvation) can be used before HU
treatment as well [48,49]. Although both methods based on isoleucine or serum starvation
are efficient, they are not convenient for all cell lines and therefore, the preliminary tests
are necessary.

3.3. Aminopterin and Methotrexate

Aminopterin and methotrexate are analogues of folic acid (Figure 5) [50]. They
are potent inhibitors of dihydrofolate reductase [51,52]. Folic acid (vitamin B9) is not
synthesized de novo by mammalian cells, therefore, it has to be obtained from food [53].
It is reduced by the action of dihydrofolate reductase either partially to the intermediate
dihydrofolate (DHF) or completely to tetrahydrofolate (THF) [54]. THF is important for
metabolism of thymidine, purines, glycine, methionine and choline [55]. Consequently, its
lack results in the cessation of DNA replication. Methionine and choline are commonly
present in the cell culture medium. To minimize the negative effects on processes other
than DNA replication during cell synchronization by these two drugs, cell culture media
also contain, besides aminopterin or methotrexate, hypoxanthine and glycine. This focuses
the effect of THF depletion on the thymidine metabolism and consequently on the DNA
synthesis [56]. In the case of methotrexate, this effect is further deepened by its inhibition
of the thymidylate synthase [57]. The inhibitory effect of both antifolate drugs can be
overcome either by the medium exchange for an antifolate-free medium or by the addition



Int. J. Mol. Sci. 2021, 22, 10759 7 of 14

of thymidine [56]. The protocol for the synchronization of cells using aminopterin can be
found, e.g., in the studies by Adams (1969) or Lindsay et al. (1970) [58,59], and the protocol
for methotrexate-based synchronization is described, for example, in [60,61].

As antifolate drugs require the presence of additional substances in the growth media
during synchronization and an additional synchronization step is required to obtain the
highly synchronized cell population, their popularity as synchronization agents is very low.
On the other hand, methotrexate is one of the most effective and extensively used drugs for
treating many kinds of cancer or severe and resistant forms of autoimmune diseases [62].

3.4. 5-Fluorodeoxyuridine

5-fluorodeoxyuridine (FdU; Figure 5) is an analogue of thymidine. It is transported
into the cell where it is converted to FdUMP (fluorodeoxyuridine 5′-monophosphate) by
the salvage pathway enzyme thymidine kinase [63]. A binary complex between 5-FdUMP
and N5,N10-methylenetetrahydrofolate irreversibly inhibits thymidylate synthase, and thus
blocks de novo synthesis of dTMP and results in the accumulation of dUMP [64]. FdU
causes intracellular nucleotide pool imbalance with the decreased dTTP and increased
dUTP levels and cessation of the DNA synthesis [65]. On the other hand, dUTP and
FdUTP (fluorodeoxyuridine 5′-triphosphate) can be incorporated into DNA instead of
dTTP, therefore, their incorporation results in base excision repair and excision of these
nucleotides from the DNA [64].

If cells are growing in a culture medium with FdU which is also supplemented
with thymidine, they are able to synthesize dTMP using the thymidine kinase (through
the salvage pathway) [63]. FdU-mediated inhibition of DNA synthesis can therefore be
reversed by the addition of thymidine. The protocol of synchronization can be found in [66].
However, FdU and its derivative 5-fluorouracil has mainly been used in the treatment of
various solid tumors [67–69] and its use for cell synchronization is very uncommon.

3.5. Aphidicolin

Aphidicolin is a tetracyclic diterpenoid, obtained from Cephalosporium aphidicola
(Figure 5) [70]. Aphidicolin inhibits the growth of eukaryotic cells by inhibiting the activity
of DNA polymerase α without interfering with the activities of DNA polymerase β and
γ. The effect of aphidicolin on DNA polymerase α is reversible [71]. Cell synchronization
with aphidicolin is simple as aphidicolin-treated cells are released from the G1/S boundary
by medium exchange [72]. On the other hand, similar to other protocols based on the
DNA synthesis inhibitors, a large portion of cells is trapped in the S phase after aphidi-
colin treatment [73]. In this respect, aphidicolin treatment is usually combined with an
additional synchronization step, e.g., with a subsequent second aphidicolin treatment after
incubation of cells in an aphidicolin-free medium [73], with the mitotic shake-off [74] or
with thymidine block [75].

3.6. Mimosine

Mimosine [β-[N-(3-hydroxy-4-oxypyridyl)]-α-aminopropionic acid] (Figure 5) also
blocks cells at the G1/S border. It seems that this block is mediated by several mecha-
nisms. It has previously been suggested that mimosine can (i) alter deoxyribonucleotide
metabolism by inhibition of ribonucleotide reductase [76,77]; (ii) inhibit initiation of DNA
replication at replication origins [78]; (iii) attenuate serine hydroxymethyltransferase [79]
or (iv) enhance the levels of p27Kip1 [80]. The chelation of iron seems to be one of the main
modes of action of mimosine for cell cycle arrest [81]. The other possible mechanisms of
mimosine action are reviewed in [81]. Although mimosine’s effect on DNA replication
is not completely clear, it is frequently used for cell synchronization on the G1/S bound-
ary [82]. Mimosine action is also frequently combined with additional synchronization
protocols to increase the percentage of cell synchrony at the G1/S border. Examples are the
protocol combining thymidine block and mimosine treatment [82] or the protocol based on
nocodazole and mimosine treatment [83].
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4. Effects of Synchronization on Cellular Metabolism

Methods of cell synchronization based on targeting DNA replication are frequently
used as they are relatively cheap and easy to perform; however, they exhibit several
unwanted effects on the cell metabolism. These methods commonly result in trapping a
relatively high proportion of cells in the S phase and this portion of cells encounters the
consequences of replication stress as their replication forks are stalled. Stalled forks usually
result in the formation of single stranded DNA (ssDNA) as replicative helicase continues
to unwind the parental DNA [84]. The persistence of ssDNA, bound by replication protein
A (RPA), and adjacent to the stalled newly replicated double-stranded DNA, generates a
signal for activation of the replication stress response: a primer–template junction [84,85].
This structure serves as a signaling platform to recruit a number of replication-stress
response proteins, including the protein kinase ataxia-telangiectasia mutated (ATM) and
Rad3-related (ATR) [84,86–89]. This response promotes fork stabilization and restart, while
preventing progression through the cell cycle until DNA replication is completed. If stalled
forks are not stabilized, or if they persist for an extended period, replication forks will
collapse. This collapse can result in the formation of double-stranded DNA breaks [84].

It has been reported that the exposure of cells to hydroxyurea, aphidicolin or thymidine
at concentrations commonly used to synchronize cell populations led to the phosphory-
lation of histone H2AX on Ser139 (induction of γH2AX) through the activation of ATM
and ATR protein kinase [90–92]. DNA damage caused by hydroxyurea or aphidicolin treat-
ment was also documented by Hammond and colleagues [93]. In addition, chromosomal
aberrations were observed after the use of thymidine treatment [94]. Further, it was also
shown that the synchronization using thymidine, mimosine or aphidicolin may lead to
growth imbalance and can also induce imbalance in the expression of cell cycle regulatory
proteins such as cyclins B1, A and E [95].

Importantly, there are some cell cycle-dependent processes which are not inhibited or
synchronized when DNA replication is arrested by hydroxyurea. Examples are centrosome
replication [96] and RRM2 transcription [13].

Moreover, protocols based on the inhibition of deoxynucleotide synthesis inevitably
result in imbalances in the nucleotide pools with various effects on cell metabolism. For
example, in the case of FdU, impaired dTMP biosynthesis results in accelerated rates
of genomic uracil incorporation [97,98] and DNA repair leading to the accumulation of
DNA strand breaks [99,100]. In addition, it is supposed that FdUMP, phosphorylated by
thymidylate kinase and nucleoside diphosphate kinase to its triphosphate form (FdUTP),
can be incorporated into DNA and contributes to FdU-mediated toxicity [101]. Further, it
is supposed that the incorporated FdUTP is recognized and excised by base excision repair
machinery using the same mechanisms that remove genomic uracil [102]. Therefore, this
method should not be used for studies focused on issues dealing with the metabolism of
deoxynucleotides or base excision repair.

As the efficacy of particular protocols depends on the cell metabolism, chosen protocol
should be experimentally verified and optimized for every cell line. In this respect, the
overexpression of thymidylate synthase can result into resistance to FdU [63,103]. The
overexpression of DHFR can contribute to the resistance of cells to methotrexate [104].
Moreover, mutation of CHO cells causing resistance to aphidicolin was described in [105].

These data clearly show that, although the synchronization protocols based on the
inhibition of DNA replication are easy to perform and can provide high amount of synchro-
nized cells, they also have many negative effects on cell metabolism. These effects must be
taken into account when planning the experiment.

5. Methods Overview

An overview of frequently used synchronization protocols, also involving those
providing cells in cell cycle phases other than at G1/S border, is summarized in the
Table 1. Irrespective of the protocol selection, optimization involving, e.g., dose and timing,
should precede the experiments as too short incubation can result in insufficient cell
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synchronization while too long incubation can result in an increase in unwanted effects on
cell metabolism.

Table 1. Summarized overview of the commonly used synchronization approaches.

Method Principle Advantages Disadvantages Protocol

Mitotic shake-off
-Detachment of mitotic cells
from cultivation surface by
shaking or by medium flow

-Low effect on the cell
metabolism
-No special treatment necessary

-Low cell yield
-Adherent cells only [106]

Centrifugal elutriation -Difference in sedimentation
velocity (cell size dependence)

-Low effect on the cell
metabolism
-Preparation of G1, S and M
fraction from one sample
-No special treatment necessary

-Expensive instrument
-Adjustment of convenient
parameters is necessary
-Adherent cells have to be
released from the surface

[107]

Flow cytometry and cell
sorting after DNA staining -Differences in DNA content -Preparation of G1, S a M

fraction from one sample

-Impact of staining step with
DNA dye on cell metabolism
-Low cell yield
-Adherent cells have to be
released from the surface
-Cell sorter required

[108]

Flow cytometry and cell
sorting of unstained cells -Differences in cell size -No special treatment necessary

-Low resolution of cell cycle
phases
-Low cell yield
-Cell sorter required
-Adherent cells have to be
released from the surface

[109]

Nocodazole/Colchicine/
Colcemid

-Inhibition of mitotic spindle
formation [110,111] -Simple

-Prolonged treatment can result
into aneuploidy, cell death or
mitotic slippage [112]

[113–115]

RO-3306

-Inhibition of cyclin-
dependent kinase 1 and
consequently G2/M
transition [116]

-Simple
-Both adherent and suspension
cell lines can be used

-Prolonged treatment can result
into genome reduplication [117] [118]

Lovastatin

-Mechanism is not completely
understood
-Lovastatin inhibits 3-hydroxy-
3-methylglutaryl-coenzyme A
reductase.
-Decrease in the activity of
cyclin-dependent kinase 1 was
also documented [119].

-Simple
-Both adherent and suspension
cell lines can be used

-Can induce apoptosis [120]
-The stage of G1-phase at which
lovastatin exerts its effect is
not clear.

[120]

Serum starvation
-Nutrient deprivation
resulting into G0/G1
arrest [121]

-Simple
-Cheap
-Both adherent and suspension
cell lines can be used

- Inappropriate for transformed
cell lines
-Prolonged serum starvation can
result into DNA
fragmentation [122]

[123]

Contact inhibition

-Contact inhibition of cell
proliferation at high cell
density resulting into G1 arrest
[121,124]

-Simple
-Cheap
-Both adherent and suspension
cell lines can be used

-Impropriate for non-adherent
and transformed cells [125]

Thymidine -Inhibition of dCTP
synthesis [26]

-Simple
-Cheap
-Both adherent and suspension
cell lines can be used

-Induction of replication stress
-Imbalance in nucleotide pools [40,126]

Hydroxyurea -Inhibition of dNTP
synthesis [42]

-Simple
-Both adherent and suspension
cell lines can be used

-Induction of replication stress [46,48,49]

Aphidicolin -Inhibition of DNA
polymerase α activity [71]

-Simple
-Both adherent and suspension
cell lines can be used

-Induction of replication stress [73–75]

Mimosine

-Inhibition of RNR [77]
-Inhibition of HMT [79]
-Initiation of DNA synthesis at
origins of replication [78]

-Simple
-Both adherent and suspension
cell lines can be used

-Induction of replication stress
-Imbalance in nucleotide pools [83]
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