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Abstract: Cell quantification is widely used both in basic and applied research. A typical example of
its use is drug discovery research. Presently, plenty of methods for cell quantification are available.
In this review, the basic techniques used for cell quantification, with a special emphasis on techniques
based on fluorescent DNA dyes, are described. The main aim of this review is to guide readers
through the possibilities of cell quantification with various methods and to show the strengths
and weaknesses of these methods, especially with respect to their sensitivity, accuracy, and length.
As these methods are frequently accompanied by an analysis of cell proliferation and cell viability,
some of these approaches are also described.
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1. Introduction

The simplest method of cell quantification is probably the use of a hemocytometer or,
in the case of adherent cells, direct calculation of cells using a microscope. Both methods
are simple and provide the possibility to quantify live and fixed cells. On the other
hand, the method based on a hemocytometer is a very time-consuming process. In this
respect, the use of a hemocytometer for the quantification of multi-well plates is practically
impossible. Although the development of automatic microscopic stations equipped with
a camera and convenient software provides one possibility to evaluate a high number of
samples, this solution is relatively expensive. Moreover, as the process of cell quantification
using automatic microscopic stations requires the acquisition, processing, and evaluation
of a large quantity of data, it is still relatively slow.

On the other hand, automatic microscopy stations are a suitable choice for the evalua-
tion of some aspects of the viability of the cell population. For example, microscopes are
typically used to discern dead and live cells with trypan blue staining [1]. Microscopy is
also suitable for the analysis of cell proliferation by specific proliferation markers such as
PCNA (proliferating cell nuclear antigen), Ki-67 antigen, and/or phospho-histone H3.

Much faster methods of cell quantification are based on the enzymatic conversion
of various substrates into detectable products as, typically, plate readers are used for
the sample evaluation. Already in 1983, Mosmann [2] developed a colorimetric assay
for cell quantification based on the enzymatic conversion of a yellow substrate to a blue
product. Although it is a frequently used approach for cell quantification, it can provide
non-linear data [3] as higher cell densities provide a lower signal per cell than lower
densities. The dependence of the signal on the metabolism of cells is therefore the main
drawback of enzymatic methods. Another disadvantage is the difficulty to quantify the
fixed cells or the necessity to perform the signal measurement relatively soon after the
reaction with the substrate.

The dependence of enzymatic assays on the enzyme activity can be overcome by
methods based on DNA quantification as the content of DNA does not depend on cell
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metabolism. Here, such type of methods is summarized, and a comparison with the
frequently used alternative approaches is provided. In addition, the chosen methods of
analysis of cell proliferation and cell viability are described.

2. Fluorescent DNA Dyes

Fluorescent DNA dyes are substances whose fluorescence is substantially increased
when they are bound to DNA [3]. Several of these dyes were tested for cell quantification.
Initially, Hoechst dyes, DAPI, or propidium iodide were used. More recently, newly de-
veloped dyes such as PicoGreen, CyQuant GR, or SYBR Green I have successfully been
applied for cell quantification.

Hoechst dye 33258 and its derivatives Hoechst 33342 and Hoechst 34580 belong to the
bis-benzimide group of fluorescent dyes developed by the German company Hoechst AG
in the early 1970s as substances with a potential clinical outcome (Figure 1) [4,5]. They are
excited by UV light (~360 nm). When bound to DNA, their fluorescence increases by
approximately thirty times. Hoechst dyes are non-intercalating stains which preferentially
bind to the A:T-rich areas in the minor groove of the DNA [5,6]. However, the possible
intercalation of Hoechst dyes in G:C-rich areas was also shown [6].
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As the cell membrane is more permeable for Hoechst 33342 than for the other Hoechst
dyes, it is preferentially used for the analysis of live cells, typically for the measurement of
DNA content [7,8]. However, one must take into consideration in such experiments that
the long incubation period of live cells with Hoechst 33342 can lead to pronounced ATM,
Chk2, and p53 phosphorylation [9]. Although Hoechst 33342 can be used to stain live cells,
procedures for cell quantification typically involve fixation. For example, the approach
described by McCaffrey et al. [10] involves fixation by formaldehyde or glutaraldehyde,
staining, washing, and signal measurement [10]. The signal measurement can be conducted
by a plate reader, although microscopes can be used as well. As the fixed cells are quantified,
samples can be stored for a prolonged period.

The permeability of cell membranes for Hoechst 33258 is much lower; therefore,
the protocols for DNA and cell quantification include cell fixation or cell lysis [11–15].
In the study of Rage et al. [15], the unfixed cells were lysed by incubation in distilled water
and frozen. After thawing the samples, a solution of Hoechst 33258 was added, followed by
fluorescence measurement. As the samples can be frozen before cell quantification, this pro-
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tocol provides the possibility to store samples for a long time before cell quantification
as well.

Another protocol based on Hoechst 33258 staining includes cell lysis with sodium
dodecyl sulphate (SDS) [11]. It is a multistep protocol involving the removal of adher-
ent cells to the solution, centrifugation, incubation with 1% SDS, and 100-fold dilution
of the samples to decrease the SDS concentration prior to the addition of Hoechst [11].
Although no data about the use of this protocol in multi-well plates are available, this
protocol seems to be less suitable for such samples.

Another fast protocol is based on methanol fixation followed by staining with Hoechst
33258. The Hoechst dye is then extracted from DNA by denatured ethanol [12]. This proto-
col can be used for the evaluation of samples containing between 1000 and 500,000 cells [12].
However, as denatured ethanol was used in that study, it is not completely clear if the same
result can be obtained with pure ethanol.

DAPI is another DNA dye frequently used for cell quantification. DAPI belongs to the
indol substances (Figure 2a), and initially, it was synthesized by Dann et al. as a potentially
active trypanocidal diamine [16,17]. It strongly binds to A:T sequences of the minor groove
of DNA and intercalates in G:C or in mixed G:C and A:T sequences of DNA [18]. Similar to
the case of Hoechst dyes, after binding of DAPI to DNA, its fluorescence increases (circa
twenty times) [19]. DAPI was also successfully used for cell quantification [10]. The proto-
col included five simple steps: washing, fixation with formaldehyde or glutaraldehyde,
staining with DAPI, washing, and fluorescence reading. In this respect, the described
method is simple and fast.
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Recently, a highly sensitive approach using DNA dyes (Hoechst 33258 or Hoechst
33342, or DAPI) for cell quantification was described [3]. The method overview is shown
in Figure 3. The protocol is based on the incubation of fixed cells with a DNA dye,
followed by incubation with SDS solution [3]. The presence of SDS results in the quick
de-staining of DNA and, simultaneously, in an up to a 1000-fold increase in the fluorescence
intensity of the used dyes. This increase can be attributed to the micelle formation of SDS.
The sensitivity of this method is around 50–70 cells.
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Figure 3. The scheme of cell quantification according to [3]. The cells are fixed with ethanol followed
by drying. Then, cells are stained with Hoechst dye. Afterwards, the cells are washed for 3 × 5 min
to remove the non-specifically bound dye and to stabilize the cells. After a short rinsing of cells with
a buffer, adjusting the pH to 7, samples are incubated in the elution and signal enhancement solution
with SDS. Finally, small aliquots are transferred to black well plates, and the signal is measured and
evaluated. Step 2 (cell drying) is optional, but it is highly recommended if 96-well plates are used.
If DAPI is used instead of Hoechst dyes, the procedure and incubation times are the same as in the
case of Hoechst dyes except for the washing in Step 4, which should be shortened to only 3 × 2 min.
Adapted from [3].

The described approach was also successfully tested for the analysis of the cytotoxic
effect of various substances [3]. It, similar to other methods based on DNA staining,
does not depend on the metabolic state of the cells. Therefore, it is also suitable for the
quantification of cells exhibiting low metabolic activity, including senescent cells.

Propidium iodide is another DNA dye which can be used for cell quantification.
This red DNA stain requires cell membrane permeabilization before it can enter the cell,
as the intact cell membrane is impermeable for this dye. Propidium iodide belongs to the
phenanthridinium group of compounds (Figure 2b) and interacts with double-stranded
DNA (dsDNA) and/or RNA, having no preference in nucleosides [20,21]. The fluorescence
of propidium iodide increases up to 30-fold if bound to DNA [22]. The sensitivity of
the protocol based on the measurement of the propidium iodide signal could be around
150–500 cells. The protocol based on propidium iodide was successfully tested for cyto-
toxicity assessment, for example, in [23]. However, as cell permeabilization is required,
it prolongs the whole procedure. In this study, the cell membrane was permeabilized using
freezing at −20 ◦C for 24 h. Despite the relatively high sensitivity of the protocol, this dye
is rather used for the assessment of cell viability, including bacterial cells. In such cases,
a combination of propidium iodide with another dye such as SYBR Green I, SYTO 9, or
fluorescein diacetate (cell membrane is permeable for these dyes) is commonly used [24–26].
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On the other hand, it was shown that the protocols based on the use of propidium iodide
can lead to an underestimation of viable adherent bacterial cells [25].

PicoGreen belongs to the newer fluorescent DNA dyes with a high specificity for
dsDNA (Figure 2c) [21]. The fluorescence of PicoGreen after its binding to DNA is increased
circa 1000 times and is proportional to the DNA amount [27]. According to Blaheta et al. [21],
circa 100 cells or 0.5 ng DNA can be detected by PicoGreen. As the cell membrane is
impermeable for PicoGreen, the cells have to be fixed or digested before incubation with
this dye [21]. In this respect, PicoGreen requires around 20 h of digestion of cells with
papain to obtain such high sensitivity [21]. Although it was shown that the PicoGreen
assay is suitable to measure cell proliferation in 3D cell cultures [28] or to analyze the DNA
content in solutions [27,29], Pabbruwe et al. showed that the PicoGreen assay used for
DNA quantification in 3D culture is less sensitive than the MTT assay [30].

CyQuant GR is a dye available as a part of the commercial kit CyQuant™ Cell Prolif-
eration Assay (ThermoFisher Scientific) that provides a strong green fluorescence when
bound to DNA and six times lower fluorescence when bound to RNA [20]. According
to [26], the sensitivity limit of cell quantification by this dye is extremely high as it can reveal
10–50 cells. Linearity of the signal was obtained for up to 25,000–50,000 cells. If the concen-
tration of the dye was increased, the linearity was increased up to 100,000–250,000 cells [31].
The disadvantage of the assay based on CyQuant GR is the necessity to freeze and thaw
cells at−70 ◦C followed by cell lysis [3,31]. A variant of the CyQuant kit (CyQuant™ Direct
Cell Proliferation Assay, ThermoFisher Scientific) without the need to freeze is available as
well, but the sensitivity and the linearity range are lower (100–20,000 cells) [3]. Besides this,
it is supposed that the CyQuant assay may interfere with some chemicals present in the
culture medium, such as phenol red.

SYBR Green I is another fluorescent DNA binding dye which was used to measure
the cell number by the determination of DNA content [32]. It preferentially binds to
dsDNA [33] and has a similar structure to PicoGreen (Figure 2d). SYBR Green I has a
low background in the absence of DNA. Therefore, the unbound dye does not need to be
removed from samples as it does not fluoresce when not bound to DNA. The sensitivity
of the SYBR Green I assay is proposed to be around 1000 cells [32]. This assay was used,
for example, to determine the impact of different culture medium compositions on the
proliferation of fibroblasts [34].

3. Alternative Approaches of Cell Quantification

Alternative methods are mainly based on the measurement of cell metabolic activity.
Although methods based on the metabolic activity of cells are simple, fast, and sensitive,
the dependence of the signal on the cell number is commonly less linear than in the case of
DNA dyes [3] as the metabolic activity can vary greatly with the cell density. Furthermore,
they should not be used if substances affecting cellular metabolism are tested [31].

3.1. Assays Based on the Measurement of Mitochondrial Activity
3.1.1. Tetrazolium Based Assay

Usually, monotetrazolium salts are used for the measurement of mitochondrial ac-
tivity. They are reduced by NAD(P)H-dependent oxidoreductases and dehydrogenases
by metabolically active cells to formazans [35]. The most commonly used salt is 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT, Figure 4). As the re-
duction of the yellow MTT leads to the formation of insoluble purple formazan crystals
(Figure 5), formazan crystals have to be solubilized before the signal measurement. Typi-
cally, the signal is measured at 540–720 nm using plate readers [36].
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the XTT, MTS, and WS-1 assays.

Various solutions are used to solubilize formazan crystals. The original colorimetric
MTT assay was developed by Mosmann in 1983 [2,35]. He used acid isopropyl alcohol for
formazan solubilization [37]. Later, Carmichael et al. showed that the use of acid isopropyl
alcohol could lead to low optical absorption values, and therefore they suggested DMSO
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or mineral oils as an alternative [37,38]. In addition, SDS/HCl solution [39] or ethanol with
acetic acid [40] was used as a formazan crystal solvent. Although it is not exactly clear
which of the aforementioned solvents is the best one for formazan solubilization, DMSO
and isopropanol are the most commonly used solvents for the solubilization of formazan
crystals [37,40].

The necessity to solubilize formazan led to the development of alternative monote-
trazolium salts. Examples are XTT (sodium 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-
[(phenylamino)carbonyl]-2H-tetrazolium inner salt; Figure 4), MTS (5-[3-(carboxymethoxy)
phenyl]-3-(4,5-dimethyl-2-thiazolyl)-2-(4-sulfophenyl)-2H-tetrazolium inner salt; Figure 4),
and WST-1 (sodium 5-(2,4-disulfophenyl)-2-(4-iodophenyl)-3-(4-nitrophenyl)-2H-tetrazolium
inner salt; Figure 4). The reduction of these modified tetrazolium salts resulted in the forma-
tion of water-soluble formazans [36,41,42]. In the case of XTT, the formazan crystals can be
directly solubilized in the culture medium [42]. Comparing to MTT, it is supposed that the
XTT assay is more sensitive as well [36,41]. MTS needs the presence of an electron-coupling
agent such as phenazine methosulphate (PMS) and is similar to XTT reduced to water-
soluble formazan in living cells [41]. WST-1 belongs to the new generation of water-soluble
tetrazolium salts. It contains iodine in the molecule and is more stable than XTT or MTS [43].

All the tetrazolium-based assays were successfully used for the evaluation of the
impact of the tested compounds, drugs, growth factors, or other studied substances on cell
viability, comparing to control samples. They were also employed in studies focused on
drug resistance [36].

3.1.2. Alamar Blue Assay

Besides methods based on the reduction of tetrazolium salts by mitochondrial en-
zymes, the reduction of resazurin (Alamar Blue) is also frequently used [44]. Resazurin
is an oxidized form of 7-hydroxy-3H-phenoxazin-3-1-10-oxide which is converted to the
reduced form—resorufin (Figure 6) [45]. The reduction is conducted by mitochondrial
enzymes with diaphorase activity [45,46]. The reaction is accompanied by a change of
the poorly fluorescent blue resazurin to the highly fluorescent red resorufin [45]. It is sup-
posed that dead or damaged cells produce a lower fluorescence change than proliferating
cells [36,47].
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The Alamar Blue assay was used for an analysis of the impact of ionizing radiation on
cell viability and cell re-growth depending on the time and radiation dose [45], cytotoxic-
ity [46–49], apoptosis and cell death [50,51], neuronal viability [52], and others. It is also
suitable for long-term experiments without killing the cells [36,53].
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3.2. Assays Utilizing Other Cellular Metabolic Activities

There are plenty of other assays employing metabolic activities to quantify cells.
Several commonly used methods are described below.

The cellular esterase assay utilizes the production of a fluorescent substance from
the non-fluorescent fluorescein esters (fluorescein diacetate or 4-methylumbelliferyl hep-
tanoate) by cellular esterases [54]. The cell membrane is permeable for these esters and
impermeable for their fluorescent products. Therefore, incubation with the esters results in
the staining of live cells with an intact cell membrane. The sensitivity of the method is circa
100 cells if 4-methylumbelliferyl heptanoate is used [54].

Instead of fluorescein esters, calcein-AM (calcein-acetoxymethylester) can be used.
It also passes across the cell membrane of live and dead cells [55,56]. In the cytoplasm,
the non-fluorescent calcein-AM is cleaved by the cellular esterases into fluorescent calcein,
which is lipid-insoluble, and therefore it remains inside the cells with an intact cell mem-
brane and is released from the dead cells [36,55,56]. The conversion of non-fluorescent
calcein-AM is accompanied by the green fluorescent signal of calcein [36,55]. The calcein-
AM assay was used, for example, to analyze the cell-mediated cytotoxicity of T lymphocytes
or NK cells [55,56]. Microscopes, flow cytometers, or plate readers can be used for the
signal detection of both esterase products.

Another approach used for cell quantification is based on the analysis of cytosolic
acid phosphatase activity [57,58]. This assay is based on the hydrolysis of p-nitrophenol
phosphate to p-nitrophenol by the intracellular acid phosphatases in viable cells and the
measurement of the absorbance of p-nitrophenol at 405 nm [58]. The signal is directly
proportional to the cell number in the range of 1000–100,000 cells per well of the 96-well
plates [58–60]. This assay was used to determine the cell number in various cell lines [58,60].

The ATP assay can be used for cell quantification as well. ATP is the major energy
source produced mainly in mitochondria [36] and is accepted as a marker of viable cells [60].
In this respect, the total ATP levels can be employed to evaluate the cell viability or cytotoxic
effect of various substances. The ATP assay utilizes the determination of the ATP level
by the conversion of the added luciferin to oxyluciferin by the enzyme luciferase in the
presence of Mg2+ ions and ATP, producing the luminescent signal in cell lysates [61,62].
This assay is fast, and its sensitivity limit is approximately 1500 cells [61]. The disadvantage
of the ATP assay is that it cannot be used in studies with substances affecting cellular
metabolism without time-consuming controls [31].

4. DNA Synthesis and Proliferation Markers

As the proliferative activity of tumour cells is an important prognostic marker in the
diagnosis of cancer and the proliferative activity is also followed during the development of
anticancer drugs, proliferation markers are widely used in basic and applied research [63].
Basically, two groups of markers are available: (i) labeled DNA precursors and (ii) cell cycle-
dependent proteins. While DNA precursors are primarily used during the development of
anticancer drugs and also in studies dealing with the impact of various substances on the
cell cycle, cell cycle-dependent proteins are predominantly used in clinics.

DNA precursors mainly involve nucleoside analogues. These analogues can pass the
cell membrane and are incorporated by cellular polymerases into DNA. If a short pulse
with an analogue is used, most of the labeled cells are in the S phase. If a long pulse is used,
only proliferating cells are labeled.

In the past, [3H]-thymidine was most frequently used for this purpose. After its
incorporation into newly synthesized DNA, the cell population is analyzed by autora-
diography or scintillation [28,36]. However, one clear disadvantage is the fact that this
assay is time-consuming and requires radioactive compound handling. Therefore, other
DNA replication markers were developed. The most popular are 5-bromo-2′-deoxyuridine
(BrdU) and 5-ethynyl-2′-deoxyuridine (EdU) [36].

At the beginning of its use, BrdU incorporated into DNA was detected by autora-
diography, similarly as [3H]-thymidine. Later on, specific antibodies against BrdU were
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developed, and BrdU became very popular in analyses of DNA synthetic activity [64].
On the other hand, the disadvantage of BrdU is the necessity to reveal it in the DNA
structure to be accessible for antibodies. Presently, various methods of BrdU revelation are
available. These include the use of acids [65] or hydroxide [66], the use of nucleases [67],
the use of low-concentration HCl with exonuclease III [68], incubation with copper ions [69],
photolysis [70], or heat denaturation [66].

EdU works on a similar principle as BrdU as it is incorporated into DNA during DNA
replication instead of thymidine [71]. Nevertheless, the incorporated EdU is detected by the
so-called click reaction and does not need to be revealed in the DNA structure [72]. On the
other hand, EdU is not suitable for long pulses as it is toxic for cells [64]. The quantification
of BrdU- or EdU-labeled cells is usually performed by flow cytometry or microscopy [67,68].
Microscopy is used for the detection of DNA synthetic activity by BrdU or EdU as DNA
replication serves as an excellent proliferation marker [64].

From the protein proliferation markers, PCNA, Ki-67 antigen, or phospho-histone
H3 are usually used to assess cell proliferation. PCNA is a protein participating in DNA
replication, DNA repair, chromatin remodeling, and cell cycle control [73] and is usually
synthesized from the late G1 phase through to the S phase until the G2 phase and is absent
in the M phase [74]. PCNA exhibits two patterns of nuclear expression: (1) free PCNA with
diffuse nuclear staining expressed in all cells and (2) bound PCNA which is a component of
the replication complex showing a punctate pattern only in the S phase [75]. Ki-67 staining
is widely used as a proliferation indicator in the clinical setting, although its function
and dynamics are not clear [76]. It was initially considered as a marker of cycling cells
absent in non-dividing cells [77]. More recent studies showed that it is rather a graded
than a binary marker of proliferation [76]. Similarly, phospho-histone H3 is used in the
clinical setting. The phosphorylation of histone H3 occurs during the late G2 phase to the
early prophase, while dephosphorylation occurs slowly from the late anaphase to the early
telophase. This allows using phospho-histone H3 staining for the detection of mitotically
active cells [78].

5. Viability Test

Dye exclusion assays are frequently used to estimate the number of viable cells versus
dead cells in tested cell populations. They are based on the exclusion of the used dye by
live cells due to the intact cell membrane. On the contrary, dead cells do not exclude the
dye and are stained [1,36]. However, although cells may have an intact cell membrane,
they might not grow or proliferate [79]. Therefore, this should be taken into account when
using the dye exclusion assay.

The most commonly used dye in these assays is trypan blue, but other dyes such
as eosin, propidium, nigrosin, safranin, methylene blue, and Congo red can be used as
well [1,36,80–82]. Trypan blue is a negatively charged diazo dye and can be used both
in vitro and in vivo. It stains dead cells in blue, while live cells are clear and unstained [36].

The evaluation of the dye exclusion assay can be performed either manually us-
ing a hemocytometer (such as a Bürker chamber, a Fuchs–Rosenthal chamber, a Na-
geotte chamber, a Malassez chamber, a Thoma chamber, or a Bürker–Türk chamber [83];
Neubauer chamber, Figure 7), semi-automatically (e.g., Countess 3 automated cell counter
from Thermo Scientific), or automatically (e.g., Vi-CELL XR from Beckman Coulter) [80,81].
Eventually, a flow cytometer or automatic microscopy station with the appropriate software
can be used.

The direct cell counting by a hemocytometer is very accurate; however, the accuracy
rapidly decreases for a small number of cells [12]. Furthermore, this approach is time-
consuming and laborious [12,31].
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The quantification of necrotic and/or apoptotic cells can also be conducted by the
lactate dehydrogenase release assay (LDH; Figure 8). This assay was developed to study
cytotoxicity in immune cells, but presently, it is also used to study the impact of new
compounds or drugs [36,84,85]. LDH is released to the culture medium after membrane
disruption in dead cells. LDH catalyzes the conversion of lactate to pyruvate and the
simultaneous conversion of NAD+ to NADH in the first step [84–86]. The produced NADH
is then used in the following step to reduce the tetrazolium salt into formazan which is
measured colorimetrically. The measured signal of formazan is directly proportional to the
LDH released to the culture medium [36].
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Another possibility for the quantification of necrotic and/or apoptotic cells is to use
the glucose-6-phosphate dehydrogenase release assay (G6PD; Figure 8) [87]. This enzyme is
also released from cells with a damaged cell membrane. It generates NADPH from NADP+

which is, in the next step, used for the reduction of the exogenously added resazurin to
fluorescent resorufin [36,87]. The principle of both release assays is shown in Figure 8.

Both the LDH and G6PD assays are very fast as they can be completed in around
1 h [87,88]. On the other hand, the LDH release assay seems to be less sensitive than the
G6PD release assay. It also provides higher background signals in most serum-containing
growth media [36,87]. Despite that, the LDH release assay is a widely used and accepted
assay for cell viability analysis [36,89].

The alternative approach utilizes the determination of glyceraldehyde-3-phosphate
dehydrogenase activity in dead cells. It is performed in two consecutive steps. In the first
step, the enzyme glyceraldehyde 3-phosphate dehydrogenase, which is abundant in the
cytoplasm, converts the added glyceraldehyde 3-phosphate into 1,3 diphosphoglycerate.



Molecules 2021, 26, 5515 11 of 16

In the consecutive step, the added phosphoglycerate kinase catalyzes the transfer of the
phosphate group from 1,3 diphosphoglycerate to adenosine diphosphate. The result of
this reaction is ATP and 3-phosphoglycerate. ATP is then used as a substrate for luciferase.
The advantages are the relative sensitivity, versatility, and, to some degree, independence
from the cell type [90]. However, it was also found that this enzyme release assay can be
inaccurate in measuring cytotoxicity in a heterogeneous mixture of effector and target cells;
therefore, other assays utilizing enzyme activities were developed [36,91].

6. Conclusions and Method Overview

Various assays have been developed for cell quantification. For the sake of simplicity,
we summarize the approaches described in this review with respect to the principle, the
method of their evaluation, advantages/disadvantages, and sensitivity in Table 1.

Table 1. Summary of the discussed methods used for cell quantification. The light red-colored rows depict approaches
using DNA dyes; the light blue-colored row depicts methods based on the analysis of DNA replication; and the light
green-colored rows depict methods based on the measurement of metabolic activity.

Method Method of Evaluation Advantages Disadvantages Sensitivity

Increase in the
fluorescence of DAPI,

Hoechst 33258, or Hoechst
33342 after their binding
to DNA in the fixed cells

[10,14]

Fluorescence (plate
reader)

Cheap and fast
Samples can be stored for a

prolonged time

The necessity of fixation
step N/A

Elution of Hoechst 33258
from DNA of fixed cells by

denatured ethanol [12]

Fluorescence (plate
reader) Cheap and fast

The necessity of fixation
step

Unclear whether
non-denatured ethanol

can be used

1000 cells

Increase in the
fluorescence of Hoechst
33258 after its binding to
DNA of lysed cells [15]

Fluorescence
(plate reader)

Cheap and fast
Samples can be stored in the freezer

before the signal measurement
Cell lysis is necessary N/A

Increase in the
fluorescence of Hoechst
33258 after its binding to
DNA of lysed cells [11]

Fluorescence
(plate reader) Cheap

Multistep procedure
Cell lysis is necessary
Less suitable for well

plates

N/A

Elution of Hoechst or
DAPI dyes from the DNA

of the fixed cells and
signal enhancement by

SDS [3]

Fluorescence (plate reader
or microscope)

Cheap, fast, and simple
High-throughput performance

possible
Signal stable for at least twenty days

No cell lysis
Possible combination with the

detection of cellular components.
Suitable for slowly growing or

senescent cells

The washing step has to
be controlled in the case

of DAPI
Necessity of fixation

step

70 cells (DAPI)
35 (Hoechst

33342)

Increase in the
fluorescence of propidium

iodide after binding to
DNA of permeabilized

cells [23]

Fluorescence
(plate reader)

Cheap
Sensitive

Cell viability can be simultaneously
evaluated

Time-consuming 150–500 cells

Increase in the
fluorescence of PicoGreen
after its binding to DNA

of the enzymatically
digested cells [21,28]

Fluorescence
(plate reader)

Sensitive
Suitable for slowly growing cells

Time-consuming cell
digestion necessary

Expensive
100 cells

Increase in the
fluorescence of CyQuant

GR after its binding to
DNA of the lysed cells [31]

Fluorescence
(plate reader) Sensitive

Freezing/thawing
cycles at −70 ◦C

Cell lysis necessary
Expensive

10–50 cells
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Table 1. Cont.

Method Method of Evaluation Advantages Disadvantages Sensitivity

Increase in the
fluorescence of SYBR

Green I after its binding to
DNA of the fixed and

permeabilized cells [24,32]

Fluorescence
(phosphorimager)

Low background in the absence of
DNA—no need to wash out the

unbound dye
Less sensitive 1000 cells

Incorporation of
3H-thymidine

in replicated DNA
[20,28,54]

Autoradiography
(β-scintillation counter) High sensitivity

High costs
Work with radioactive

material—need to abide
by rules

Time-consuming
Accuracy in

high-density cell
populations depends on
the diffusion efficacy of

3H-thymidine

100 cells

Reduction of tetrazolium
salts (MTT, MTS, XTT,

WST-1) by mitochondrial
enzymes to the colored

products [2,12,36,92]

Colorimetric
(plate reader)

Easy
Sensitive

Cheap

Relies on the metabolic
activity of cells or

intracellular enzyme
concentration

Not suitable for
long-term studies (toxic

for cells)

200 cells

Reduction of Alamar Blue
by the mitochondrial

enzymes to the fluorescent
product [28,36,44–46]

Fluorescence
(plate reader, microscope)

Simple
Based on water-soluble compound

Suitable for adherent and suspension
cells

Non-toxic
Cheap

Sensitive
Stable in culture medium

Suitable for long-term studies

Relies on the metabolic
state of cells
Accuracy in

high-density cell
populations depends on
the diffusion efficacy of

the dye
Long optimization

Fluorescence
interference

80 cells

Production of the
fluorescent substance from

the non-fluorescent
fluorescein esters or

calcein-AM by cellular
esterases [36,54,56,93]

Fluorescence
(plate reader)

Fast
Simple

Depends on the
metabolic state of cells

Less sensitive in
adherent cells

100 cells (if 4-
methylumbelliferyl

heptanoate is
used as a
substrate)

Conversion of the added
luciferin to oxyluciferin by
the enzyme luciferase in
the presence of ATP and

production of
luminescence [36,61]

Luminescence Fast

Cell lysis necessary
Cannot be used in

studies with substances
affecting cellular

metabolism

1500 cells

Hydrolysis of
p-nitrophenol phosphate
to p-nitrophenol by the

intracellular acid
phosphatases [57–59]

Absorbance (plate reader)
Simple
Cheap

Adherent and suspension cells
Less sensitive 100–1000 cells

7. Patents

Palacký University Olomouc holds Czech patents (307415, 308519, 308385) and a
European patent (3395956) for the method of determining the amount of DNA in samples
and its use for determining the amount of cells, for the method of stabilizing cells and for
selectively removing DNA dyes. Names of inventors: A.L. and K.K.
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