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SUMMARY

ATR, activated by replication stress, protects repli-
cation forks locally and suppresses origin firing glob-
ally. Here, we show that these functions of ATR are
mechanistically coupled. Although initially stable,
stalled forks in ATR-deficient cells undergo
nucleus-wide breakage after unscheduled origin
firing generates an excess of single-stranded DNA
that exhausts the nuclear pool of RPA. Partial reduc-
tion of RPA accelerated fork breakage, and forced
elevation of RPA was sufficient to delay such ‘‘repli-
cation catastrophe’’ even in the absence of ATR
activity. Conversely, unscheduled origin firing
induced breakage of stalled forks even in cells with
active ATR. Thus, ATR-mediated suppression of
dormant origins shields active forks against irrever-
sible breakage via preventing exhaustion of nuclear
RPA. This study elucidates how replicating genomes
avoid destabilizing DNA damage. Because cancer
cells commonly feature intrinsically high replication
stress, this study also provides a molecular rationale
for their hypersensitivity to ATR inhibitors.

INTRODUCTION

Eukaryotic genomes are constantly challenged by assaults that

can undermine the integrity of replicating DNA. Mild forms of

replication stress stochastically occur during physiological cell

cycles, and pathological settings such as oncogenic transforma-

tion further elevate replication stress, which could lead to DNA

damage and instigate genomic instability (Halazonetis et al.,

2008). The common denominator of replication stress is a stalled

fork, an aberrant structure that triggers a genome surveillance

pathway orchestrated by the ATR kinase (Branzei and Foiani,

2009). ATR is activated by its physical recruitment to RPA-
1088 Cell 155, 1088–1103, November 21, 2013 ª2013 Elsevier Inc.
coated single-stranded DNA (ssDNA) generated by uncoupling

of replicative MCM helicase from DNA polymerases. ATR and

its downstream effectors are then required to counteract

adverse effects of replication stress both by delaying cell-cycle

progression and by stabilizing stalled forks (Friedel et al.,

2009). Consequences of impaired ATR signaling include chro-

mosome instability, developmental defects, and accelerated

aging (Brown and Baltimore, 2000; Murga et al., 2009). Further-

more, ATR signaling has been implicated in oncogenesis by

imposing a barrier to cancer progression (Fang et al., 2004).

However, although the ATR pathway is clearly central for

genome maintenance, how it protects replicating DNA is not

well understood.

ATR signaling must be carefully choreographed on a temporal

scale. Replication stress is a highly dynamic chain of events

starting from acutely arrested forks with fully assembled repli-

somes. If replication stress persists, stalled forks are converted

into ‘‘collapsed forks’’ characterized by dissociation and/or

impaired modifications of replisome components (Lambert and

Carr, 2005; Tercero et al., 2003). Further extension of replication

stress can convert forks to DNA double-strand breaks (DSBs)

that pose the most serious threat to genome integrity. It has

been shown that the latter transition requires cleavage of replica-

tion intermediates by structure-specific nucleases such as SLX4

and MUS81 (Fekairi et al., 2009; Forment et al., 2011; Hanada

et al., 2007) and that ATR signaling delays the onset of fork

breakage (Trenz et al., 2006). However, it is also evident from

these studies that replication fork breakage is a delayed

response that develops only over many hours (Petermann

et al., 2010). Why the fork protection initially works and eventu-

ally fails is currently unknown.

The spatial aspect of ATR signaling brings about another layer

of complexity. The ATR pathway not only regulates fork stability

locally, but one of its signaling components, the CHK1 kinase,

diffuses globally through the nucleus, where it counteracts new

origin firing (Sørensen and Syljuåsen, 2012). The unresolved

question is how are the ‘‘local’’ (short range, at stalled forks)

and ‘‘global’’ (long range, throughout the nucleus) functions of
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Figure 1. ATR Inhibition Triggers Hyperloading of RPA on S Phase Chromatin followed by Fork Breakage

(A) Asynchronous U-2-OS cells were incubated with HU (2mM) and ATRi (2 mM) for the indicated times. Whole-cell extracts (WCE) were immunoblotted with the

indicated antibodies.

(B) U-2-OS cells were incubated with HU ± ATRi for 80 min and immunostained with the indicated antibodies after pre-extraction. DSBs were labeled with a

TUNEL assay. Nuclear DNA was counterstained by DAPI. Insets show colocalization of DSBs and RPA2-pS4/8 foci. Scale bar, 10 mm.

(C) U-2-OS cells were treated with HU for 40 min, pre-extracted, and immunostained with the indicated antibodies. Scale bar, 10 mm.

(D) Quantitative image-based cytometry single-cell analysis (QIBC) of immunolabeled U-2-O-S cells. Asynchronous cells were treated with HU (2 mM)

and ATRi (2 mM) for the indicated times and immunostained as in (C). Mean nuclear intensities for DAPI, RPA1 (chromatin-bound fraction [CB]),

and g-H2AX were determined for each of >5,000 individual cells and were plotted in a scatter diagram. S phase cells, with chromatin-loaded RPA1, are labeled

in blue.

(legend continued on next page)
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ATR coordinated. In this study, we provide evidence that the

global and local functions of ATR converge at a surprisingly

simple but robust mechanism, which effectively guards the

genome against destabilizing replication stress.

RESULTS

Stalled Forks Are Transiently Resistant to Breakage
Independent of ATR Signaling
To investigate mechanisms involved in replication fork stability,

we induced replication stress by treating U-2-OS cells with

hydroxyurea (HU), which causes rapid depletion of dNTPs

(Eklund et al., 2001). To manipulate ATR activity, we applied a

specific ATR inhibitor (ATRi), which faithfully recapitulates

phenotypes associated with genetic ablation of ATR (Toledo

et al., 2011). In addition to inducing gradual phosphorylation of

ATR targets such as H2AX (pS139), CHK1 (pS345), and RPA2

(pS33) (Figure 1A), combination of HU with ATRi resulted in

a delayed phosphorylation of ATM targets, including ATM

(pS1981), KAP1 (pS824), CHK2 (pT68), and RPA2 (pT21,

pS4/8). This was accompanied by generation of DSBs detected

by the TUNEL assay specifically at the RPA-decorated stalled

forks with hallmarks of ATM activity (Figure 1B). Whereas fork

breakage in ATR-deficient cells was expected, it was surprising

to see that this occurred with a substantial delay (Figure 1)

despite the kinase being inhibited within seconds to minutes

(Toledo et al., 2011). This raised the possibility that, for a limited

period of time, the fork protection machinery operates autono-

mously and independently of ATR.

To investigate this possibility, we established a quantitative

image-based cytometry (QIBC) method, which allowed us to

monitor the complete dynamics of replication stress responses

with unprecedented detail and in a fully automated and high

content-fashion (see Supplemental Information available online).

The key feature of this assay is its ability to separate with great

accuracy and reproducibility the fraction of cells with intact

stalled forks from those in which the combination of HU and

ATRi treatment triggered fork breakage accompanied by

hallmarks of ATM activity such as H2AX hyperphosphorylation

(Figures 1C and 1D). Interestingly, also at this analytical level,

the conversion of stalled forks to DSBs lagged behind acute

ATR inhibition (Figures S1A and S1B), and we therefore set out

to investigate the mechanistic underpinnings of fork surveillance

between ATR inhibition and DSB generation.

Breakage of Stalled Forks Correlates with Increased
Levels of Chromatin-Loaded RPA
Wenoticed that, before DSBs became detectable, the amount of

RPA loaded on chromatin accumulated to levels that were

several fold higher than in cells exposed to HU alone (Figure 1E).

Increasing the HU concentration did not further increase RPA

loading, confirming that replication was fully stalled (Figure S2A).

These data allowed for two predictions: (1) that ATR may have a
(E) (Right) Mean RPA1 and DAPI values from (D) are plotted in a scatter dia

from G1 and G2 cells based on chromatin-loaded RPA1 levels. (Left) Avera

diagram.

See also Figure S1.
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specific role in limiting RPA chromatin loading and (2) that the

excessive RPA loading in the absence of ATR might be coupled

to DSB generation. Consistent with these predictions, the accu-

mulation of RPA on chromatin reached its peak well before DSB

generation, and the conversion of stalled forks to DSBs was

confined to cells with the highest degree of chromatin-loaded

RPA both in U-2-OS cells, used as a model system throughout

this study (Figures 2A, 2B, and S2B), and in primary, nonimmor-

talized human fibroblasts (Figure 2C). Furthermore, we repro-

duced these results by knocking down ATR with siRNA (Figures

S2C and S2D) and in DLD1-ATR-Seckel cells carrying a hypo-

morphic Atrmutation (Hurley et al., 2007) (Figure S2E). Because

prolonged dNTP deprivation was reported to trigger DSBs even

in cells with intact ATR (Petermann et al., 2010), we applied QIBC

on cells treated with HU alone for up to 24 hr. Indeed, we saw

progressive accumulation of cells with broken forks in the later

time points (Figure 2D), and DSB generation was again restricted

to cells with the highest levels of chromatin-loaded RPA (Figures

S2F and S2G). Thus, the excessive accumulation of RPA at

stalled forks precedes DNA breakage, and ATR delays this

pathological outcome of replication stress.

Nuclear Pool of RPA Is Rate Limiting for ssDNA
Protection at Stalled Forks
Because RPA avidly interacts with ssDNA (Fanning et al., 2006),

we considered the possibility that ATR inhibition might increase

ssDNA generation up to the point where it would deplete all

available RPA. Initially, generation of ssDNA detected by BrdU

incorporation under nondenaturing conditions (Figure 2E) and

accumulation of chromatin-loaded RPA followed an expected

linear trend. However, when RPA loading reached its limit,

ssDNA continued to accumulate (Figure 2F). This was reflected

by a deviation from linearity of the ssDNA/RPA ratio, suggesting

that cells reached a stage when RPA became limited for binding

newly generated ssDNA. Performing the same assay in a cell line

stably expressing RPA2-EGFP allowed us to include a DSB

marker (ATM-phosphorylated RPA2-pT21) and thus directly

correlate ssDNA formation, RPA loading, and DNA breakage.

Remarkably, DSBs were strictly confined to cells that had

sequestered all RPA and generated an excess of uncoated

ssDNA (Figure 2G). Thus, in the absence of ATR, ssDNA at

stalled forks progressively depletes the nuclear pool of RPA,

which is accompanied by a conversion of stalled forks to DSBs.

Excessive Origin Firing Depletes RPA and Triggers
Simultaneous Fork Breakage in Active Replication
Factories
ATR activity is propagated by the CHK1 kinase, which diffuses

from stalled forks to restrain origin firing. Although this global

spreading of the ATR pathway seems to have limited bearings

on local protection of stalled forks, our data indicated a mecha-

nistic connection. First, the increase in chromatin-bound RPA

after ATR inhibition could be explained by hyperaccumulation
gram. The blue line indicates the threshold used to discriminate S phase

ge intensities of chromatin-loaded RPA in S phase cells from the scatter



Figure 2. Fork Breakage Occurs when ssDNA Exhausts Nuclear RPA

(A) QIBC of U-2-OS cells. Mean g-H2AX and RPA fluorescence intensities from Figures 1D and 1E are plotted in a scatter diagram. Coloring indicates RPA levels

at which the pool is exhausted, and DSB appear red. Untreated cells are depicted in gray.

(B) QIBC of U-2-OS cells treated for the indicated times with HU (2 mM) and ATRi (2 mM) and immunostained for g-H2AX and RPA1 after pre-extraction. Mean

values are plotted in a scatter diagram. Percentages of ATM-dependent g-H2AX-positive cells (containing DSBs) were calculated.

(C) QIBC of the BJ primary fibroblasts exposed to HU and ATRi as indicated, and immunostained for g-H2AX and RPA1 after pre-extraction. Percentages of cells

with DSBs were calculated as in (B).

(D) QIBC of U-2-OS cells treated with HU (2 mM) for the indicated times (without ATRi). Percentages of cells with DSBs were calculated as in (B).

(E) U-2-OS cells were grown with BrdU (10 mM) for 48 hr, incubatedwith HU (2mM) and ATRi (2 mM) for the indicated times, pre-extracted, and subjected to native

BrdU and RPA1 immunostaining to detect ssDNA exposed at replication forks. Scale bar, 10 mm.

(legend continued on next page)
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of stalled forks following unscheduled firing of dormant origins

(Ge et al., 2007; Ibarra et al., 2008). Second, the rate-limiting

nature of RPA would only manifest after excessive origin activity

had time to deplete all available RPA, explaining the temporal

gap between ATR inhibition and DSB appearance.

To test these predictions, we exploited the paradigm that

origin firing requires CDK2 (Gillespie and Blow, 2010). Consis-

tently, application of roscovitine, a broad CDK inhibitor widely

used to suppress origin activity, abolished both excessive RPA

loading and fork breakage in cells treated with HU and ATRi (Fig-

ures 3A, 3B, and S3A). These results were reproduced by inhib-

iting other regulators of origin firing such as CDC7 or CDC45

(Figures 3A, 3B, S3A, and S3B).The relatively high concentration

of HU in all these experiments allowed onlyminimal fork progres-

sion, indicating that the observed effects of roscovitine, CDC7

inhibition, or CDC45 depletion are related to new origin firing.

Importantly, substitution of roscovitine by a specific inhibitor of

mitotic CDK1 did not prevent fork breakage in HU and ATRi-

treated cells (Figure 3C), ruling out the possibility of premature

mobilization of structure specific nucleases, which are known

to be hyperactivated in mitosis (Matos et al., 2013).

The above results prompted us to ask why some cells tend to

exhaust RPA earlier than others. Given the tight correlation

between the number of active origins and sequestration of

RPA to stalled forks, we hypothesized that cells with the highest

replication activity would be the first ones to reach the RPA

threshold. Indeed, monitoring of H2AX phosphorylation during

the cell cycle revealed that fork breakage after HU and ATRi

treatment occurred first in cells with the highest replication rate

(Figure 3D). Together, these data suggest that, in the absence

of ATR, the coordinated fork breakage occurs during S phase

after ssDNA generated by unscheduled origin firing exceeds

the nuclear pool of RPA.

Increased Origin Activity Triggers Fork Breakage
in ATR-Proficient Cells
In the above experiments, fork breakage was assayed under

conditions when HU was combined with ATR inhibition, leaving

the possibility that an unknown ATR effector might exert its pro-

tective function directly at stalled forks. To address this, we

asked whether ATR could have prevented breakage of stalled

forks in cells primed to increase the number of active forks above

the physiological threshold. We forced otherwise unstressed

cells to fire extra origins by transiently inhibiting ATR but without

any additional replication stress. Indeed, DNA fiber analysis

showed that the number of active forks increased after incuba-

tion with ATRi (Figure S3C), and the unscheduled replication

was also visible by QIBC as higher levels of chromatin-loaded

RPA. Importantly, the time and dose of the ATRi under these

conditions did not cause DNA breakage (Figure 3E, time 0). We
(F) QIBC of U-2-OS images treated and processed as in (E). Mean BrdU and

Progressive deviation of BrdU/RPA1 signal from linearity (light blue bar) is evident

uncoated ssDNA.

(G) QIBC of RPA2-EGFP cells were grownwith BrdU as in (E), incubated with HU (2

BrdU and RPA2-pT21. Mean DAPI, RPA2-EGFP, BrdU, and RPA2-pT21 single-ce

indicates that the presence of DSBs is confined to cells that deviate from linear

See also Figure S2.
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then washed away the ATRi and incubated, or not, cells with

HU. Strikingly, whereas in the absence of replication stress, cells

continued to replicate normally, addition of HU rapidly ex-

hausted the residual RPA pool and caused DNA breakage (Fig-

ures 3E and S3D). ATR activity recovered back to normal after

washing out the inhibitor (Figures 3E and S3E), and roscovitine

no longer prevented DSB generation because the majority of

available origins had already fired during the priming step (Fig-

ure 3F). Thus, the unscheduled origin firing in ATR-deficient cells

appears to be themajor source of RPA depletion and the ensuing

fork breakage.

Exhaustions of RPA Triggers Fork Breakage in All Active
Replication Factories
Replication of eukaryotic genomes takes place in replication

factories manifesting as nuclear foci that contain both active

replicons and dormant origins (Gillespie and Blow, 2010). Given

this spatial organization and the emerging evidence that RPA is

rate limiting for protecting stalled forks anywhere in the nucleus,

our current model predicted that, after all RPA becomes seques-

tered, unprotected ssDNA should break in all active replication

factories. Indeed, this was what we observed. First, in a time-

lapse analysis of RPA2-EGFP cells treated with HU and ATRi,

we found that RPA progressively accumulated in the same

nuclear foci, indicating that the unscheduled origin firing is

largely confined to replication factories that were active already

at the beginning of the replication stress (Figure 3G and Movies

S1, S2, and S3). This was confirmed by comparing the spatial

distribution of replication activity before and at the end of replica-

tion stress using endogenous RPA (Figure 3H). Second, the

hallmarks of fork breakage, such as RPA phosphorylation on

S4/8 or T21, occurred simultaneously in all replication factories

and regardless of the total extent of damage (Figures 3I, S3F,

and S3G). Thus, breakage of stalled forks in a given nucleus after

global RPA exhaustion occurs in all replication factories active at

the time of replication stress.

Partial Knockdown of RPA Accelerates Breakage
of Stalled Forks
To validate these conclusions, we reasoned that lowering RPA

levels should render cells more sensitive to excessive origin

firing. We partially knocked down RPA1 (Figure 4A) to the degree

that did not impair DNA replication, preserved normal ATR activ-

ity, and did not cause DNA damage (Figures 4A, S4A, and S4B).

Strikingly, however, after applying replication stress by com-

bined HU and ATRi treatment, reduction of RPA levels progres-

sively increased the fraction of cells with DSBs (Figures 4B–4E).

We verified that the dynamics of DSB generation closely corre-

lated with accumulation of unprotected ssDNA, consistent with

the notion that DNA damage is triggered after ssDNA exceeds
chromatin-loaded RPA1 single-cell values are plotted in a scatter diagram.

in later time points when RPA becomes limiting (red) and leads to exposure of

mM) and ATRi (2 mM) for 100min, pre-extracted, and immunostained for native

ll values are plotted in the indicated combinations. The RPA2-pT21 color code

RPA2-EGFP/BrdU range (blue bar).



(legend on next page)
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RPA buffering capacity (Figures S4D and S4E). Of note, the

accelerated fork breakage occurred in cells with inhibited ATR,

indicating that the ability of RPA to shield stalled forks is an

autonomous mechanism that counteracts DNA breakage.

Stoichiometric Increase of the RPA Subunits Delays
Fork Breakage
A reverse prediction was that a surplus of RPA should extend the

dynamic range within which ATR-deficient cells escape fork

breakage. To this end, we generated ‘‘SuperRPA’’ cell lines

stably expressing 2- to 3-fold excess of all three RPA subunits,

expressed from the same transcript in a stoichiometric fashion

(Figures 4F, 4G, S4F, and S4G). Such degree of RPAoverexpres-

sion did not alter DNA replication or ATR activation (Figures S4H

and S4I). Strikingly, however, these cells dramatically extended

the dynamic range of RPA loading on chromatin and became

remarkably resilient to dNTP depletion and ATR inhibition at

time points when cells with normal RPA levels underwent

massive fork breakage (Figures 4H, 4I, S4J, and S4K). Further-

more, the acquired resilience of the SuperRPA cells was associ-

ated with reduced formation of unprotected ssDNA (Figure 4J).

Because all of these experiments were performed in cells with

inhibited ATR, we conclude that, as long as cells contain suffi-

cient levels of RPA complex, it can be deployed to ssDNA and

replication forks remain stable irrespective of ATR signaling. Of

note, single overexpression of RPA1 subunits or other ssDNA-

binding proteins such as hSSB1 or Rad51 did not prevent fork

breakage after RPA depletion (L.I. Toledo and J. Lukas, unpub-

lished data), indicating that the main cellular activity that can

effectively shield replication intermediates against breakage is

the fully assembled RPA complex, likely due to its exquisitely

high affinity for ssDNA.

Exhaustion of the RPA Pool Generates Irreversible
Damage to Replication Factories
Previous work indicated that forks exposed to replication stress

eventually lose the ability to restart (Jossen and Bermejo, 2013).

To test whether RPA exhaustion can explain this, we monitored

the DSB dynamics in cells that were exposed to HU and ATRi for

2.5 hr (when the majority of S phase cells exhausted RPA and
Figure 3. By Limiting Origin Firing, ATR Delays Exhaustion of RPA and

(A) U-2-OS cells treated with the general CDK inhibitor roscovitine (20 mM) or CDC

72 hr) were incubated with HU (2 mM) and ATRi (2 mM) for 80 min and were anal

(B) Quantification of QIBC plots from (A). (Right) Average values for RPA1 in S ph

(C) U-2-OS cells were treated and analyzed as in (A), combining HU and ATRi w

(D) U-2-OS cells were incubated with EdU (10 mM) for 30min followed by HU (2mM

indicated. QIBC was performed, and mean DAPI, RPA1, g-H2AX, and EdU (Click-

depicted in the scatter diagrams were color coded according to g-H2AX intensit

(E) U-2-OS cells were incubated with HU (2mM) and ATRi (2 mM) in the four describ

and g-H2AX was performed, and scatter diagrams for the two indicated combin

(F) U-2-OS cells were incubated with ATRi for 80 min, treated with HU with or wi

(G) U-2-OS cells stably expressing RPA2-EGFP were treated with HU (2 mM) and

for up to 2 hr. Insets illustrate progressive loading of RPA into replication factorie

(H) U-2-OS cells were treated and processed as in (D), with the exception that the

bar, 5 mm.

(I) U-2-OS cells were treated with HU (2 mM) and ATRi (2 mM) for 80 min, and QIBC

images of nuclei with increasing levels of RPA2-pT21 were chosen, and their relat

homogenously phosphorylated. Scale bar, 10 mm.

See also Figure S3.
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underwent DNA breakage) and were then released by removing

both drugs (Figure 5A). Strikingly, 72 hr after the release, a frac-

tion of cells still contained an unusually high number of RPA foci

(100 foci per cell in average), indicating the presence of unre-

paired forks (Figure 5B and Movie S4). After excluding contribu-

tion of undamaged cells, we could see that the fraction of cells

with aberrant forks was very similar to that detected at the time

of release from the HU/ATRi treatment (Figures S5A and S5B),

suggesting that all such cells suffered a permanent proliferation

blockade linked to irreparable fork breakage. Indeed, although

cells with hallmarks of unrepaired forks could resume progres-

sion through S phase, likely due to replicons that were activated

only after releasing from replication stress (Figure 5C and S5C),

they all arrested at the G2-M boundary and eventually pre-

sented morphological features of senescence such as dramatic

increase in size of cell nuclei (Figures 5C–5E). Thus, RPA ex-

haustion marks a ‘‘point of no return’’ for cell proliferation

(Figure S5D).

To test whether such point of no return is reached exactly at

the time of RPA exhaustion, we incubated cells with HU and

ATRi for 40 min, when RPA loading approaches its threshold

yet still without DNA breakage (Figure 2A), and then removed

the drugs to stop any further RPA depletion. Under such

conditions, RPA was rapidly unloaded from the chromatin (Fig-

ures 5F and 5G and Movie S5, top cell), whereas, when we

extended the HU/ATRi treatment beyond the point of fork

breakage (Figure 2B), an increasing fraction of cells failed to

dissolve the RPA foci and arrested (Figure 5H and Movies

S5, bottom cell, S6, and S7). Significantly, elevation of the

RPA complex in the SuperRPA cell lines delayed this form of

irreversible fork breakage (see Figures 4H–4J and S4K) and

allowed recovery from the extended stress despite the fact

that the overall ssDNA accumulation was 2- to 4-fold higher

than in naive cells (Figures 5I and S5E). These results further

support the model that RPA exhaustion, and not just an

accumulation of supraphysiological levels of ssDNA, marks

the point of no return. Furthermore, because ATR was

inhibited in these experiments, the excess of RPA appears

necessary and sufficient to shield supernumerary forks against

breakage.
Global Breakage of Active Forks

7 inhibitor (20 mM) or transfected with CDC45 siRNA (indicated concentrations,

yzed by QIBC.

ase cells are shown.

ith a specific inhibitor of mitotic CDK1 (10 mM).

) and ATRi (2 mM) for the indicated times, pre-extracted, and immunostained as

it reaction) intensities per nucleus were obtained. DAPI/EdU replication profiles

y, which indicates the confinement of DSB to vigorously replicating cells.

ed combinations and for the indicated times. QIBC for chromatin-loaded RPA1

ations are shown (the rest are shown in Figure S3).

thout roscovitine for an additional 80 min, and analyzed by QIBC.

ATRi (2 mM), and fluorescence images of living cells were acquired every 2 min

s after ATR inhibition (see also Movie S1). Scale bar, 5 mm.

EdU was applied for 10 min. A representative picture is shown (80 min). Scale

was performed after RPA2 and RPA2-pT21 immunostainings. Representative

ive position in the QIBC diagram is indicated. Images show that all RPA foci are



(legend on next page)
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We reasoned that the accumulation of damaged cells in G2

is due to persistent checkpoint signaling from DNA lesions

generated on stalled forks deprived from the RPA protection.

Indicative of the presence of chromosome breaks, we observed

cases of massive nuclear fragmentation in damaged cells that

attempted to enter mitosis (Figure S5F). To validate that these

lesions are bona fide DSBs, we pulse labeled active forks by

EdU and then applied calyculin A, a phosphatase inhibitor that

has been used as a tool to overcome cell-cycle checkpoints

and induce premature chromosome condensation (El Achkar

et al., 2005). Remarkably, virtually all metaphase spreads

obtained after forcing the G2-arrested cells to mitosis were

composed of shattered chromosomes with multiple breaks (Fig-

ures 5J, S5G, and S5H). Furthermore, the EdU signal was local-

ized predominantly at sites with hallmarks of chromosome

breaks such as terminal parts of shattered chromosomes or

boundaries between fused chromosome fragments (Figures

5J, S5G, and S5H), supporting the conclusion that RPA exhaus-

tion leads to the simultaneous breakage of active forks. Because

of its fatal consequences, we henceforth refer to this event as

‘‘replication catastrophe’’ (RC).

RPA Exhaustion Is a Common Denominator of
Replication Catastrophe, Regardless of the Source
of Replication Stress or Unscheduled Origin Firing
A potential caveat of the previous results is that these were

achieved under conditions in which replication stress imposed

by HU was combined with unscheduled origin firing induced

by ATRi. To validate that RPA shields stalled forks in a broader

biological context, we revisited all major predictions by testing

either drug alone and by using independent replication inhibitors

and origin regulators. We first reasoned that, if the model is

generally applicable, RPA should be rate limiting for fork

breakage in cells that are treated with HU or ATRi alone because

both treatments lead to steady generation of ssDNA (by helicase

and polymerase uncoupling and unscheduled origin firing,

respectively). Indeed, the increasing reduction of nuclear RPA

levels leads to progressive fork breakage under these condi-

tions (Figures 6A, 6B, and S6A). Thus, ‘‘single hits’’ of replica-

tion perturbation can eventually deplete the RPA pool, and
Figure 4. RPA Levels Determine ssDNA Resilience to Breakage Indepe

(A) U-2-OS cells were transfected with the indicated concentrations of siRNA a

indicated RPA subunits and g-H2AX.

(B) U-2-OS cells transfected as in (A) were treated with HU (2 mM) and ATRi (2

antibodies. Representative images (40 min time point) are shown. Scale bar, 10

(C) QIBC from immunostainings in (B). (Bottom bars) The degree of RPA1 knockd

with physiological levels of RPA (gray) serve as reference.

(D) Quantification of cells with DSBs in (C) at two different times (40 and 60 min)

(E) Average intensities of chromatin-bound RPA1 per nucleus from (D) (averaged

(F) WCE from naive U-2-OS, a controlled U-2-OS cell line stably expressing fre

indicated antibodies.

(G) Representative images of naive U-2-OS cells (top) and the SuperRPA cell lin

directly by GFP imaging (absent in naive U-2-OS cells). Scale bar, 10 mm.

(H) U-2-OS cell lines SuperRPA#3 and SuperRPA#4 (see Figure S5) were treated

QIBC with the indicated antibodies. Green color in the scatter diagrams illustrate

(I) Quantification of cells with DSB in (H) at the indicated time points.

(J) Control U-2-OS cell and SuperRPA#3 cell line were incubated with BrdU as in

times, and subjected to QIBC. Percentages refer to cells with unprotected ssDN

See also Figure S4.
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combining them merely accelerates RPA depletion and the

ensuing fork breakage.

The next prediction was that RPA should be rate limiting for

active fork protection regardless of the sources of replication

stress and/or unscheduled origin firing. This was also confirmed

by experiments showing that independent inducers of fork stall-

ing (aphidicolin, gemcitabine, citarabine, UV light) phenocopied

HU by synergizing with ATRi in progressively depleting RPA up

to the point of RC (Figures 6C and S6C). Likewise, the ATRi-

induced RPA exhaustion was reproduced not only by inhibiting

or depleting CHK1 (the downstream component of the ATR

pathway), but also by inhibiting WEE1, another suppressor of

unscheduled origin firing (Figures 6D and S6D). As predicted

by the model, RC after CHK1 or WEE1 inhibition was mitigated

by simultaneous suppression of origin firing (Figures 6E and

S6E), and it showed strong correlation with the RPA levels

when applied alone (Figure 6F and S6F), as well as when com-

bined with distinct forms of replications stress (Figures 6G and

S6G). Finally, the EdU-flanked chromosome breaks on calyculin

A-induced metaphase spreads confirmed that the alternative

sources of replication stress caused DSBs at active forks (Fig-

ures 6H and S6H). Thus, exhaustion of nuclear RPA represents

a biological disaster for replicating genomes, regardless of the

sources of replication stress or unscheduled origin firing.

DISCUSSION

Although ATR requires the RPA-coated ssDNA for its own activa-

tion, the endpoint of ATR signaling to protect forks against fatal

breakage feeds back on the very same RPA by safeguarding its

dynamic range and thus preventing exhaustion of this crucial

molecular shield of replication intermediates (Figure 7A). The

salient features of this mechanism are summarized in (Figures

7B–7D). When replication forks stall, the RPA-coated ssDNA

generated ahead of the fork activates ATR. Although ATR per

se remains confined to stalled forks, the pathway is propagated

by CHK1, which diffuses away to suppress dormant origins. This

limits the number of stalled forks to those that were active at the

onset of the replication stress and ensures that RPA remains in

excess over ssDNA (Figure 7B). If ATR signaling fails, dormant
ndently of ATR

gainst RPA1 for 40 hr, and WCE were immunoblotted with antibodies to the

mM) for 40 and 60 min, pre-extracted, and immunostained with the indicated

mm.

own at the point of fork breakage. Control U-2-OS diagrams obtained in cells

after HU and ATRi treatment.

from both time points).

e EGFP, and four different SuperRPA cell lines were immunoblotted with the

e #3 (bottom) immunostained for total RPA1 and RPA2. RPA3 was visualized

with HU (2 mM) and ATRi (2 mM) for the indicated times and were subjected to

s the excess of RPA1 loaded on the chromatin in RPA-overexpressing cells.

Figures 2E and 2F, treated with HU (2 mM) and ATRi (2 mM) for the indicated

A.
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origins fire (Figure 7C), and the newly generated ssDNA progres-

sively depletes nuclear RPA. When all RPA becomes seques-

tered, every active replicon generates unprotected ssDNA,

which is rapidly converted to DSBs (Figure 7D).

We also show that RPA depletion in cells continuously

exposed to replication stress triggers irreversible cell-cycle

arrest. One scenario explaining this fatal consequence of repli-

cation stress is depicted in Figure 7E and reflects the model of

eukaryotic replication whereby several loops of DNA, which

may even originate from neighboring chromosomes, can be

engaged in a single replicon (Cayrou et al., 2010). After seques-

tering all available RPA, every replicating loop would be prone to

generate unprotected ssDNA, and the ensuing DNA breakage

would dismantle the affected loci nucleus wide to an extent

that would not be compatible with survival. In exceptional cases,

RC might be confined to micronuclei, which result from chromo-

some misalignment and tend to undergo uncoordinated DNA

replication (Crasta et al., 2012). Here, RPA exhaustion and the

resulting chromosome disintegration might generate a precursor

for chromothripsis, a cancer-related genomic abnormality

characterized by erratic reassembly of previously ‘‘pulverized’’

DNA (Stephens et al., 2011).

Whereas we demonstrate that the excess of RPA determines

fork resilience and effectively shields ssDNA intermediates under

diverse stress conditions, our data do not exclude roles of other

factors that, in a context-specific fashion, fine-tune fork protec-

tions against enzymatic processing that can ultimately lead

to DSBs. One such example is the SMARCAL1-annealing

nuclease, whose depletion delays DSB formation after ATR

inhibition (Couch et al., 2013). It is possible that annealing heli-

cases generate structures (such as the so-called reversed forks)

that not only participate in RPA sequestration, but also generate

substrates that can be processed by structure-specific nucle-

ases, and thereby modulate the point at which RPA becomes

exhausted.

An intriguing physiological ramification of our results includes

common fragile sites (CFS), late-replicating genomic loci that

undergo frequent breakage after various sources of replication

stress, including oncogenic transformation (Debatisse et al.,
Figure 5. Fork Damage after RPA Exhaustion Is Irreversible and Drives

(A) Schematic representation of the recovery assay. U-2-OS cells were treated w

pre-extracted and fixed at the indicated time points.

(B) Representative image of U-2-OS cells immunostained for chromatin-bound R

(C) QIBC scatter diagrams from cells in (B). Damaged S phase cells (red) progress

(D) (Top) Representative images of DAPI-stained undamaged and damaged cells

color-coded fields containing DAPI-stained damaged (red) and undamaged (blue

(E) Nuclear size of damaged cells was quantified by QIBC from data in (D) at the

(F) U-2-OS cells were treated for 40min with HU (2 mM) and ATRi (2 mM), released

values for chromatin-loaded RPA in S phase cells are depicted.

(G) RPA2-EGFP cells were treated for 40 min with HU (2 mM) and ATRi (2 mM), an

pictures are shown. Scale bar, 5 mm.

(H) Same as in (G) but with the extended treatment (60 min). Scale bar, 5 mm.

(I) SuperRPA cell lines (#3 and #4) and control U-2-OS cells were treated with HU

pre-extracted, and subjected to QIBC.

(J) A representative metaphase spread derived from a cell treated with HU and A

labeled with EdU for 10 min prior to the HU-induced replication stress. Prematu

Information). (Right) Higher magnification of the indicated field. Scale bars: 10 mm

See also Figure S5.
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2012). Although clearly triggered by replication stress, CFS

breakage does not occur in S phase, but only inmitosis (Harrigan

et al., 2011; Lukas et al., 2011). Our results elucidate this

conundrum by showing the astonishing capacity of RPA to

shield stalled forks way above the hypothetical situation when

all currently known fragile sites encounter replication stress.

However, RPA protection does not solve the problem of

unfinished replication, explaining why CFS manifest as DSBs

only in mitosis after structure-specific nucleases become hyper-

activated and cleave underreplicated DNA (Naim et al., 2013;

Ying et al., 2013). Interestingly, we note that RPA may not

completely prevent intra-S-phase breakage of early replication

fragile sites (ERFS) that, unlike CFS, replicate early and are

largely confined to genomic loci that are highly transcriptionally

active (Barlow et al., 2013). Under such circumstances, sporadic

fork breakage can indeed happen even when RPA remains in

excess due to the high stochastic probability of a collision

between replication and transcription intermediates. This is

analogous to a situation in cells deficient in single-strand DNA

repair, whereby the nicks in DNA are converted to DSBs by the

advancing replication forks, a situation that does not involve

excessive ssDNA formation and thus cannot be prevented

by RPA.

Interestingly, the concept of the RPA barrier against RC

has intriguing evolutionary ramifications. The QIBC technique

allowed us to estimate that the amount of ssDNA that a cell

can tolerate, and therefore the excess of RPA required for shield-

ing it, was �8-fold higher than the amount required to support

unperturbed DNA replication. This was unexpected because,

from the thermodynamic perspective, proteins should not accu-

mulate excessively unless this is physiologically pertinent. Strik-

ingly, however, a similar surplus was reported for the nuclear

pool of dormant origins licensed by the MCM helicase (Ge

et al., 2007; Ibarra et al., 2008). Such excess of intrinsic replica-

tion potential turned out to be vital under replication stress, when

the completion of genome replication becomes critically reliant

on increased origin activity. Our data suggest that the surplus

of RPA coevolved with dormant origins to ‘‘buffer’’ the excess

of ssDNA during or after replication stress. Indeed, without
Cells to a Permanent Cell-Cycle Arrest

ith HU (2 mM) and ATRi (2 mM) for 2.5 hr and after replacing with fresh medium

PA2 72 hr after release form HU/ATRi. Scale bar, 10 mm.

through S phase after release from the stress and arrest in G2 (4n DNA content).

, respectively (72 hr time point). Scale bar, 10 mm. (Bottom) Representative and

) cell nuclei (72 hr). Scale bar, 10 mm.

indicated times. Average area of G1 and G2 cells is annotated as a reference.

into drug-free media, and subjected to QIBC after the indicated times. Average

d time-lapse images were acquired after removing the drugs. Representative

(2 mM) and ATRi (2 mM) for 80 min, released into the drug-free medium for 2 hr,

TRi inhibitor for 80 min and allowed to recover for 40 hr. Active replicons were

re chromosome condensation was induced by calyculin A (see Supplemental

(left), 5 mm (right).
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RPA protection, dormant origins could hardly be sustained

during evolution because their activation would inevitably lead

to replication catastrophe.

Finally, the global exhaustion of RPA described here can eluci-

date an increasing number of pathophysiological conditions that

are linked with replication stress. First, cells derived from

patients with the Seckel syndrome with hypomorphic ATR suffer

massive replication stress associated with DNA breakage and

premature senescence (Murga et al., 2009). We predicted that

genomic instability in Seckel cells is fuelled by exhausting RPA

due to uncontrolled replication, and we were indeed able to

mimic this situation by using a specific ATR inhibitor. Second,

oncogene transformation is accompanied by elevated replica-

tion stress (Halazonetis et al., 2008), and it has been shown

that expression of oncogenes is synthetically lethal with ATR

deficiency (Toledo et al., 2011). Based on our model, uncon-

trolled replication in oncogene-transformed cells is expected

to reduce the intrinsic RPA buffer, explaining why ATR and/or

CHK1 inhibitors show a remarkable selectivity in killing onco-

gene-transformed cells compared to normal cells (Toledo

et al., 2011, Murga et al., 2011). Third, CHK1 inhibitors have

shown a remarkable toxicity for tumor cells when combined

with Gemcitabine in preclinical studies (Thompson and Eastman,

2013). This promising therapeutic approach essentially mimics

the conditions used in this work to cause RPA exhaustion.

Fourth, the reported correlation between high RPA level and

increased therapeutic resistance in human cancer (Dahai et al.,

2013; Givalos et al., 2007) indicates that enhanced expression

and/or stability of RPA might be selected for during oncogenic

transformation. This suggests that replication catastrophe might

be a promising goal of current therapies aiming at efficient

removal of cancer cells. Our data open up the possibility that

modulating the RPA dynamic range might improve the efficacy

of such treatments.

EXPERIMENTAL PROCEDURES

Plasmids and RNA Interference

cDNAs for human RPA subunits were provided by Marc S. Wold (University of

Iowa, USA). P2A sequences were obtained as primers (Invitrogen). Cloning

into pAc-GFP-C1 (Clontech) is described in the Supplemental Information.

SiRNA duplexes were from Ambion (Silencer Select): ATR (s536), Cdc45

(s15829), Chk1 (s503), and RPA1 (s12127). Plasmid transfections were

performedwith Lipofectamine LTX and Plus Reagent (Invitrogen). siRNA trans-

fections were performed with Lipofectamine RNAiMAX (Invitrogen). Unless
Figure 6. RPA Exhaustion Is an Obligatory Step before Fork Breakage

(A) U-2-OS cells were transfected with the indicated concentrations of siRNA ag

stained with gH2AX and RPA1 antibodies, and analyzed by QIBC. Arrows mark

(B) U-2-OS cells were transfected as in (A), treated with ATRi as indicated, and a

(C) U-2-OS cells were incubated with the drugs (aphidicolin 20 mM, cytarabine 50

with ATRi, incubated for indicated times, and analyzed as in (A).

(D) U-2-OS cells were incubated with HU and the indicated inhibitors and analyz

(E) U-2-OS cells were transfected with the indicated siRNAs for 3 days, treated w

(F) U-2-OS cells were transfected with the siRNA against RPA1 as in (A), treated

(G) Naive U-2-OS cells, the same cells transfected with RPA1 siRNA for 2 days,

analyzed by QIBC as in (A). The graphs on the right quantify the fraction of cells

(H) A representative metaphase spread (see Figure 5J) derived from a U-2-OS ce

(bottom).

See also Figure S6.

1100 Cell 155, 1088–1103, November 21, 2013 ª2013 Elsevier Inc.
specified, siRNAs were used at 25 nM. In siRNA titration assays, total siRNA

concentration was kept constant with the addition of control siRNA.

Cell Culture

Human U-2-OS osteosarcoma, DLD1-ATR-WildType, and DLD1-ATR-Seckel

colorectal cancer cells (Hurley et al., 2007) were grown in Dulbecco’s modified

Eagle’s medium with 10% fetal bovine serum (GIBCO). For live imaging, cells

were grown in CO2-independent medium (phenol red and riboflavin free,

GIBCO). U-2-OS cell lines stably expressing �2-fold excess of RPA2-EGFP

were generated by standard procedures; RPA2-GFP avidly accumulated in

replication factories regardless of replication stress. The AcGFP-RPA3-P2A-

RPA1-P2A-RPA2 cell lines are characterized in Figures 4 and S4. Drugs and

other cell culture supplements are described in the Supplemental Information.

Immunochemical and Biochemical Methods

Antibodies used for immunolabeling techniques are specified in the Supple-

mental Information. Whole-cell extracts (WCE) were obtained by lysis in

RIPA buffer (50 mM Tris-HCl [pH 8.0], 150 mM NaCl, 1.0% Igepal CA-630,

0.1% SDS, 0.1% Na- deoxycholic acid, supplemented with protease and

phosphatase inhibitors) containing MgCl2 (2 mM) and Benzonase (Novagen)

and analyzed by SDS-PAGE following standard procedures. For pre-

extraction, cells were washed once with PBS and incubated with ice-cold

PBS containing Triton X-100 (0.2%) for 1 min on ice prior to fixation. Immuno-

staining procedure is described in the Supplemental Information. EdU and

TUNEL detection was performed by Click-it assay following manufacturer’s

instructions (Life Technologies).

Microscopy

Images used in QIBC were obtained with a motorized Olympus IX-81 wide-

field microscope equipped with fast-switching filter wheels for excitation

and emission of DAPI, FITC, Cy3, and Cy5 fluorescent dyes; an MT20 Illumina-

tion system; and a digital monochrome Hamamatsu C9100 CCD camera.

Olympus UPLSAPO 103/0.4 NA and 403/0.9 NA objectives were used.

Automated unbiased image acquisition was carried out by the propriety

Scan acquisition software. For full description of QIBC see the Supplemental

Information. Standard wide-field microscopy was performed on a Zeiss Axio

Imager A2 equipped with EC Plan-Neofluar 103/0.3, 203/0.5, 403/0.75 dry

objectives, and an AxioCamMRmcamera.Wide-field fluorescence time-lapse

imaging was carried out on a Zeiss AxioObserver.Z1 microscope with a Zeiss

Plan-APO 633/1.4 oil-immersion objective and a Coolsnap HQ CCD camera

(Roper Scientific) and on an ImageXpress Micro XL Wide-field Automated

microscope with a Plan Fluor 403/0.75 Nikon objective and a 4.66 megapixel

scientific CMOS camera.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures, six

figures, and seven movies and can be found with this article online at http://

dx.doi.org/10.1016/j.cell.2013.10.043.
ainst RPA1 for 2 days, treated with HU as indicated, pre-extracted, immuno-

cells with H2AX hyperphosphorylation corresponding to RC.

nalyzed as in (A).

mM, gemcitabine 1 mM) or exposed to UV (20 J/m2) as indicated, treated or not

ed as in (A).

ith the indicated inhibitors for 80 min, and analyzed as in (A).

with the indicated inhibitors, and after 80 min analyzed by QIBC.

or SuperRPA cells were treated with the indicated inhibitors and 120 min later

with signs of RC.

ll treated with HU and WEE1 inhibitor for 80 min. Scale bars: 10 mm (top), 5 mm

http://dx.doi.org/10.1016/j.cell.2013.10.043
http://dx.doi.org/10.1016/j.cell.2013.10.043


Figure 7. Model of Synchronized DNA Breakage at Replication Factories after RPA Exhaustion

(A) A feedback mechanism whereby ATR-CHK1 signaling ensures the maintenance of RPA surplus over ssDNA after replication stress.

(B–D) Inhibition of ATR or Chk1 triggers unscheduled firing of dormant origins, leading to a progressive RPA depletion, exposure of unprotected ssDNA, and

massive DNA breakage.

(E) Graphical depiction for irreversible shattering of replication factories after ssDNA exceeds the RPA pool.
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Eklund, H., Uhlin, U., Färnegårdh, M., Logan, D.T., and Nordlund, P. (2001).

Structure and function of the radical enzyme ribonucleotide reductase. Prog.

Biophys. Mol. Biol. 77, 177–268.

El Achkar, E., Gerbault-Seureau, M., Muleris, M., Dutrillaux, B., and Debatisse,

M. (2005). Premature condensation induces breaks at the interface of early and

late replicating chromosome bands bearing common fragile sites. Proc. Natl.

Acad. Sci. USA 102, 18069–18074.

Fang, Y., Tsao, C.-C., Goodman, B.K., Furumai, R., Tirado, C.A., Abraham,

R.T., and Wang, X.-F. (2004). ATR functions as a gene dosage-dependent

tumor suppressor on a mismatch repair-deficient background. EMBO J. 23,

3164–3174.

Fanning, E., Klimovich, V., and Nager, A.R. (2006). A dynamic model for

replication protein A (RPA) function in DNA processing pathways. Nucleic

Acids Res. 34, 4126–4137.

Fekairi, S., Scaglione, S., Chahwan, C., Taylor, E.R., Tissier, A., Coulon, S.,

Dong, M.-Q., Ruse, C., Yates, J.R., 3rd, Russell, P., et al. (2009). Human

SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/

recombination endonucleases. Cell 138, 78–89.

Forment, J.V., Blasius, M., Guerini, I., and Jackson, S.P. (2011). Structure-

specific DNA endonuclease Mus81/Eme1 generates DNA damage caused

by Chk1 inactivation. PLoS ONE 6, e23517.

Friedel, A.M., Pike, B.L., and Gasser, S.M. (2009). ATR/Mec1: coordinating

fork stability and repair. Curr. Opin. Cell Biol. 21, 237–244.

Ge, X.Q., Jackson, D.A., and Blow, J.J. (2007). Dormant origins licensed by

excess Mcm2-7 are required for human cells to survive replicative stress.

Genes Dev. 21, 3331–3341.
1102 Cell 155, 1088–1103, November 21, 2013 ª2013 Elsevier Inc.
Gillespie, P.J., and Blow, J.J. (2010). Clusters, factories and domains: The

complex structure of S-phase comes into focus. Cell Cycle 9, 3218–3226.

Givalos, N., Gakiopoulou, H., Skliri, M., Bousboukea, K., Konstantinidou, A.E.,

Korkolopoulou, P., Lelouda, M., Kouraklis, G., Patsouris, E., and Karatzas, G.

(2007). Replication protein A is an independent prognostic indicator

with potential therapeutic implications in colon cancer. Mod. Pathol. 20,

159–166.

Halazonetis, T.D., Gorgoulis, V.G., and Bartek, J. (2008). An oncogene-

induced DNA damage model for cancer development. Science 319, 1352–

1355.

Hanada, K., Budzowska, M., Davies, S.L., van Drunen, E., Onizawa, H.,

Beverloo, H.B., Maas, A., Essers, J., Hickson, I.D., and Kanaar, R. (2007).

The structure-specific endonuclease Mus81 contributes to replication

restart by generating double-strand DNA breaks. Nat. Struct. Mol. Biol. 14,

1096–1104.

Harrigan, J.A., Belotserkovskaya, R., Coates, J., Dimitrova, D.S., Polo, S.E.,

Bradshaw, C.R., Fraser, P., and Jackson, S.P. (2011). Replication

stress induces 53BP1-containing OPT domains in G1 cells. J. Cell Biol. 193,

97–108.

Hurley, P.J., Wilsker, D., and Bunz, F. (2007). Human cancer cells require ATR

for cell cycle progression following exposure to ionizing radiation. Oncogene

26, 2535–2542.

Ibarra, A., Schwob, E., and Méndez, J. (2008). Excess MCM proteins protect

human cells from replicative stress by licensing backup origins of replication.

Proc. Natl. Acad. Sci. USA 105, 8956–8961.

Jossen, R., and Bermejo, R. (2013). The DNA damage checkpoint response to

replication stress: A Game of Forks. Front. Genet. 4, 26.

Lambert, S., and Carr, A.M. (2005). Checkpoint responses to replication fork

barriers. Biochimie 87, 591–602.

Lukas, C., Savic, V., Bekker-Jensen, S., Doil, C., Neumann, B., Pedersen, R.S.,

Grøfte, M., Chan, K.L., Hickson, I.D., Bartek, J., and Lukas, J. (2011).

53BP1 nuclear bodies form around DNA lesions generated by mitotic

transmission of chromosomes under replication stress. Nat. Cell Biol. 13,

243–253.

Matos, J., Blanco, M.G., and West, S.C. (2013). Cell-cycle kinases coordinate

the resolution of recombination intermediates with chromosome segregation.

Cell reports 4, 76–86.

Murga, M., Bunting, S., Montaña, M.F., Soria, R., Mulero, F., Cañamero, M.,
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