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Alzheimer’s disease (AD) poses major health, social and economic challenges to the modern world. Despite the advances in
understanding AD, our knowledge about its pathogenesis remains incomplete. Recent data suggest that circulating microRNAs
(miRNAs) undergo complex changes in AD. Since these changes are yet to be comprehensively characterized, we investigated
miRNAs in the context of AD using two meta-analytical approaches. We reproducibly identified 2895 miRNAs in a cohort of 4186
individuals from 22 studies. Here we show that 194 miRNAs exhibited widespread changes in AD, including some novel miRNAs not
yet linked to AD. These novel AD miRNAs broaden the landscape of research on the role of miRNAs in AD. Targets of these miRNAs
further uncovered many biological pathways that, to date, remain poorly understood in AD with several “AD miRNAs" never
described in the brain. “AD miRNAs” described outside the brain significantly influenced interleukin signaling, Toll receptor
signaling, p38 MAPK pathway and insulin/IGF pathway. Our results reveal a greater complexity of biological pathways involved in
AD than previously thought and raise the question of whether AD is indeed a brain-specific and not a systemic disorder. These
findings advance current understanding of AD pathogenesis and lay the ground for the development of next-generation AD

biomarkers and design of miRNA-engaged therapies.

Molecular Psychiatry; https://doi.org/10.1038/s41380-026-03487-6

INTRODUCTION

Short non-coding RNAs with antisense complementarity, known
as microRNAs (miRNAs), were originally discovered to post-
transcriptionally regulate gene expression during roundworm
development [1, 2]. Some miRNAs contain sequence codes
(EXOmotifs) that are instructive of their secretion [3, 4] either
packaged into vesicles or bound to proteins [5, 6]. Secreted
miRNAs were identified in all major body fluids [7]. By circulating,
they allow for long-distance gene regulation and coordinated
crosstalk between tissues [8].

Abnormalities in miRNAs have been described in many human
disorders from cancer [9] to Alzheimer's disease (AD) [10]. AD is
the most common neurodegenerative disorder characterized by
abnormal levels or processing of the amyloid precursor protein
(APP) leading to amyloid plaques and aberrant phosphorylation of
the microtubule-associated protein tau [11]. Dysregulated
microtubule-dependent transport, mediated by molecular motors,
underlies axonal transport impairments and pathology in AD [12].
Several other molecules and processes have been linked to AD
pathogenesis including ApoE &4 genotype [13], the insulin
pathway [13] and past infections [14]. Accumulating evidence
also suggests a degree of mutual exclusivity between develop-
ment of cancer and AD [15, 16]. Changes in miRNAs have been
reported in the brain [17], cerebrospinal fluid [18] and plasma
[19, 20] in AD. Recent work showed that abnormalities in miRNAs

take place already during physiological aging and that miRNA
changes in AD represent at least in part a pathological
exacerbation of physiological aging [21]. We here examined
systematically circulating miRNAs in AD using two meta-analytical
approaches and rigorous data selection. We found that miRNAs
changed in AD, including a number of novel miRNAs not yet
linked to AD, target many biological pathways that are largely
unaccounted for in the context of AD with several of them never
described in the brain. These findings reveal greater complexity of
biological processes involved in AD than previously thought and
raise the question of whether AD is not a systemic rather than a
brain disorder.

METHODS

Study design

The study followed PRISMA 2020 reporting guidelines [22]. Study
resources for meta-analysis were obtained by searching PubMed,
PubMed Central (PMC) and Gene Expression Omnibus (GEO)
repository using keywords [miRNA AND (AD OR alzheimer) AND
(plasma OR serum OR blood)]. All studies reported to investigate
human circulating miRNAs in AD until October 1, 2024, that
provided either complete raw miRNA expression data or miRNA
differential expression (DE) data with fold-changes and P-values
for all analyzed miRNAs (significant and non-significant miRNA
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Table 1. Main characteristics of studies included to meta-analysis.

Study Sample size (AD + CN) miRNAs analyzed Source Expression analysis Data

Batabyal 2023 18+ 14 2578 Serum microArray DE results
Carna 2023 9+ 11 2578 Plasma microArray DE results
Denk 2018 47 + 38 87 Serum RT-qPCR Raw expression
Dong 2015 127 + 123 (48 + 48 used) 16 Serum RT-gPCR DE results
Dong 2021 8+8 1957 Blood RNAseq Raw expression
Fitz 2021 23+ 16 357 Plasma RNAseq DE results
Keller 2016 set 1 54 +22 551 Blood RNAseq DE results
Keller 2016 set 2 49 4 55 494 Blood RNAseq DE results
Kumar 2017 10+ 14 68 Serum RT-gPCR DE results
Leidinger 2013 106 + 22 (48 AD used) 366 Blood RNAseq Raw expression
Lu 2021 1021 + 288 2562 Serum microArray DE results
Ludwig 2019 145 + 214 21 Blood RT-qPCR Raw expression
Lugli 2015 35435 463 Plasma RNAseq Raw expression
Palade 2024 33+71 299 Plasma RNAseq DE results

Nie 2020 5+20 100 Plasma RNAseq Raw expression
Shigemizu 2019 1021 4 288 2562 Serum microArray Raw expression
Visconte 2023 11+ 20 255 Plasma microArray DE results
Wang 2022 47 + 62 1957 Plasma RNAseq DE results

Wen 2024 28+ 21 786 Serum RNAseq Raw expression
Wu 2020 set 1 40 + 31 72 Plasma RNAseq DE results

Wu 2020 set 2 48 + 22 191 Plasma RNAseq DE results

Zhai 2024 6+6 2263 Plasma microArray DE results

changes) were included in the meta-analysis. Research involving
non-human subjects, studies not reporting original research,
research of miRNAs isolated from sources other than plasma,
serum or blood, reports without full text, experiments presented
by incomplete results, for example experiments reporting only
miRNAs with significant raw or differential expression data, but no
information about miRNAs with non-significant changes, and
contributions presenting insufficient and/or missing data were
excluded.

Data extraction

Three researchers conducted literature search, retrieved full texts,
assessed study resources, and extracted data according to
inclusion and exclusion criteria. The extracted data included first
author, year of publication, sample size, source of miRNAs (plasma,
serum, blood), number of analyzed miRNAs, type of data (raw
expression or DE with fold-changes and P-values), type of DE
analysis, and raw expression data/DE analysis results for all
analyzed miRNAs. A total of 41 (0.2%) rows with missing and
erroneous values in the input data were removed prior to meta-
analysis. No missing values imputation was performed. To limit the
bias from random one-off effect, only miRNAs identified by at least
three independently reported studies were included in the
analyses.

Quality assessment

As recommended by the Cochrane Collaboration [23], all studies
selected for this analysis underwent quality assessment. The
quality was assessed using the Newcastle-Ottawa Scale, which
evaluates selection of study groups, comparability of groups and
assessment of outcomes [24]. In addition, vote-counts of the
general trend in directionality of miRNA changes in AD patients
compared with healthy subjects were calculated by establishing
the level of concordance in directionality of individual miRNA
expression changes (up- or down-regulation) reported in different
studies.
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Statistical analysis

All statistical analyses were performed in RStudio (v.2024.04.2 build
764, with R environment v.4.4.0). All P-values < 0.05 or -log;o P-
values > 1.301 were considered significant. DE results for studies
with raw expression data were calculated using deseq2 and limma
packages or using the Wilcox test with the Benjamini-Hochberg
correction. If statistical method was described in the original study,
we used the same procedure in our analysis. Differences between
groups of count values were analyzed using Pearson’s chi-square
test. The conditions for the applicability of the statistical tests (such
as normality of distribution, etc.) were verified prior to the analysis.

Fold-change-based meta-analysis

In the meta-analysis, the effects of individual plasma miRNAs in
AD patients compared with healthy subjects was examined using
the Amanida package for R [25]. This method provided for each
miRNA information about the directionality of miRNA expression
change (up- or down-regulated), compound log, fold-change and
compound P-value. Compound log, fold-change was calculated as
the average of the individual log-transformed (base 2) fold-
changes from the input studies weighted by study sizes. The
compound P-value was calculated using a Fisher-based weighted
P-value combination of the individual P-values from the input
studies weighted by the study size.

In addition, pseudo-T-scores were calculated using the formula
[(avg (logFC) / sd (logFC) * sqrt (Ngugies)] [26]. This score measures
consistency in directionality in miRNA expression changes, with
absolute values above 1.96 indicating the highest consistency in
up- or down-regulated miRNAs across the studies. The compound
P-values and the pseudo-T-scores were used in combination to
identify the most significant and consistent miRNA changes in AD
patients compared with healthy controls across the studies.

Weighted miRNAs co-expression network meta-analysis

Clusters of similarly behaving miRNA profiles in AD patients were
identified using a weighted miRNA co-expression network analysis

Molecular Psychiatry
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(WmiRNACNA). This analysis was based on the general workflow
derived from the weighted gene co-expression network analysis
(WGCNA) but with the input represented by the log, fold-change
values from individual studies describing differences in miRNAs
expression in AD patients compared with healthy subjects. A
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weighted adjacency matrix was computed by calculating the signed
biweight midcorrelation [cor;; = (1 + bicor) / 2] between all miRNAs.
Due to different number of studies for each miRNA, ‘pairwise.com-
plete.obs’ command was used. Optimal soft-threshold 18 was next
calculated using the WGCNA:pickSoftThreshold.fromSimilarity
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Fig. 1 Amanida-based meta-analysis. A Volcano plot showing Amanida-derived meta-analysis results. Red circles correspond to miRNAs with
compound P-values -log;o > 1.301 and pseudo-T-scores >1.96, yellow and grey circles correspond to miRNAs with compound P-values -log;o >
or < 1.301, respectively. B Venn networks showing the prevalence of significantly up- (pink) and down- (green) regulated miRNAs described
(yellow) or not (grey) in the brain in AD patients compared with healthy subjects (average expression level > 10 rpmm). C Presence of “AD
miRNAs" in individual tissues based on the miRNATissueAtlas version 2025 (one miRNA was not present in the TissueAtlas database). Only 10
tissues with the highest average miRNA expressions (rpmm normalized counts) are displayed for each miRNA changed in AD. D The top 10
most significantly enriched and top neurodegeneration-related PANTHER knowledgebase forecast biological pathways based on the strong
targets of significantly up- and down-regulated miRNAs found in brain or other tissues in AD patients compared with healthy subjects.
E Sankey plot showing targets known to be involved in the pathogenesis of AD including targets involved in impaired axonal transport for up-
(pink) and down- (green) regulated miRNAs in AD patients compared with healthy subjects. MiRNAs with more than 3 related AD targets are
displayed in the left panel. F Combined barplot of Vesiclepedia-predicted proportions of miRNAs found in extracellular vesicles (EVs)

(P =0.708) and percentage of secretion-promoting EXO motifs (P =0.00002) in AD patients compared with healthy subjects.

function (with a resulting R®=0.868) and the correlation matrix
raised to this power. The signed Topological Overlap Matrix (TOM)
was obtained using the WGCNA:TOMsimilarity function and
acceptable scale-free network properties of the matrix verified. This
matrix was converted to a dissimilarity matrix using 1-TOM. Last, a
hierarchical cluster analysis using Ward’s D*> method was performed.
The obtained dendrogram was partitioned into individual clusters
using the function WGCNA:cutreeDynamic (method = ‘hybrid’,
deepSplit=2, pamStage=T, pamRespectsDendro=T, minCluster-
Size=10). Subsequently, similar clusters were merged using the
WGCNA:mergeCloseModules function (with Module Eigengene
dissimilarity threshold of 0.4).

In traditional WGCNA, clusters of interest are identified by
correlating kME values (eigengenes of modules) with defined
phenotypic information about compared samples, for example,
AD patients versus healthy subjects. Since our data do not allow
direct comparison between AD patients and healthy subjects in
terms of similarly behaving miRNAs, AD-related clusters were
identified using the following criteria: (1) cluster miRNAs’ log, fold-
change values were significantly different from zero based on
one-sample Mann-Whitney-Wilcox test, (2) cluster miRNAs’ log,FC
Q1-Q3 range was outside of zero and, (3) at least 50% of miRNAs
in a cluster were significantly different in AD compared with
healthy subjects according to the Amanida-based meta-analysis.

MiRNA targets prediction

Prediction of the miRNA targets was performed by miRTargetLink
2.0 (https://ccb-compute.cs.uni-saarland.de/mirtargetlink2/), which
works with validated (miRTarBase 8.0) and predicted (mirDIP,
miRDB) miRNA targets from Homo sapiens [27]. The final set of
target genes corresponding to significantly changed miRNAs in
AD compared with healthy subjects was established only after
removal of duplicate results. MiRNAs were classified as “AD-
known” if they had at least one experimentally validated target
(miRTarBase 8.0) recognized to be directly implicated in AD
pathogenesis (e.g., APP, ADAM10, BACE1, PSEN1/2, MAPT). MiRNAs
without validated interactions with AD-related genes were labeled
“AD-unknown”. This division into “AD-known” and “AD-unknown”
miRNAs was used only for data interpretation purposes and did
not affect any statistical analyses.

Functional enrichment analysis

Functional enrichment analysis of sets of genes targeted by
selected miRNAs was performed using the ShinyGO V0.80 [28].
Benjamini-Hochberg FDR correction was used to assess the
significance level; 20 genes were selected as the minimum
threshold for pathway size. MiRNA target functions were obtained
using either REACTOME, Panther or KEGG database.

Tissue specificity and involvement in AD

TissueAtlas version 2025 was used to analyze miRNA tissue
specificity [29]. The presence of miRNAs in individual tissues was
verified against a matrix of average miRNA expressions from TA.
Only miRNAs with average tissue expression of > 10 rpomm were

SPRINGER NATURE

included in the analyses. MiRNAs with zero expression were
excluded prior to analysis.

MiRNA coding motifs

To test what proportion of miRNAs originates from EVs, we
calculated percentages of plasma miRNAs corresponding to
miRNAs previously identified in EVs as annotated in Vesiclepedia,
a manually curated database of molecules identified in different
classes of EVs [30]. To find out proportions of miRNAs harbouring
EXO motifs [3], we first established which EXO/CELL motifs are
present in each miRNA by cross-referencing the sequences of
individual motifs against the miRNA sequences. Only complete
EXO/CELL sequence in the miRNA was considered as the presence
of a motif. We then calculated the sum of EXO and CELL motifs per
miRNA. MiRNAs were considered carrying EXO motifs only if their
miRNA sequence contained exclusively EXO motifs or the number
of EXO motifs in the sequence was greater than the number of
cellular retention CELL motifs.

RESULTS

Sample quality and characteristics

A search using predefined key words identified 762 publications
in PubMed/PMC and 73 GEO repository datasets (Extended Data
fig. 1). Abstract review excluded 555 records, because studies
reported animal research, lacked original research or presented
meta-analyses. Full text review excluded further 258 records
reporting miRNAs analyses from sources other than plasma,
serum or blood, without full-text or showing incomplete results
or incomplete data. Following review of individual miRNAs
reported in the remaining 22 records, an additional 245 miRNAs
were excluded due to questionable reproducibility as they were
not detected by more than two independent studies. The study
sample passed quality control based on the Newcastle-Ottawa
scale (Extended Data fig. 2). Since 82% of miRNAs showed the
same direction of expression change in at least 75% of studies,
no miRNAs were excluded based on vote counts (Extended
Data fig. 3, Extended Data Table 3). The final study sample
consisted of 2650 miRNAs in a cohort of 4186 individuals
(Table 1) [21, 31-49].

Meta-analysis of circulating miRNAs in AD

To obtain a comprehensive understanding of circulating miRNAs
in AD, we measured their expression in AD patients and healthy
subjects. A total of 910 out of 2650 miRNAs demonstrated
significant expression changes in AD (compound P-scores, Fig. 1A,
Supplementary Table 1A). Only 194 of these miRNAs, however,
showed the same direction of expression change (pseudo-T-
scores, i.e. always up- or down-regulated) in at least 3
independent studies. 161 of these miRNAs were up- and 33
down-regulated in AD (Extended Data fig. 4, Extended Data
Table 4). Targets of these “AD miRNAs” were projected to
dysregulate cytokine and receptor tyrosine kinase (TRK) signaling,
to repress cell death and estrogen-receptor (ER) pathways and to
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accentuate signal transduction and transcription (Extended Data
fig. 5, Extended Data Table 5).

We next investigated possible tissues of origin of these “AD
miRNAs”. 30 and 84% of up- and down-regulated “AD miRNAs”,
respectively, were previously described in the brain but
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No of miRNAS (%)

concomitantly found most also in other organs (Fig. 1B and C,
Supplementary Table 1B and 1C). Key targets of brain “AD
miRNAs” were predicted to dysregulate p53, insulin/IGF, Ras and
interferon-y signaling, hypoxia-response via HIF activation, and
apoptosis as well as AD and Huntington’s disease (HD) pathways,
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Fig. 2 Weighted miRNAs co-expression network analysis. A Dendrogram depicting results of hierarchical clustering, bottom color strip
indicates distribution of the final 12 modules. B Boxplots portraying distribution of average log,FC values (calculated as mean of log2FC
values from individual studies included in meta-analysis) of miRNAs in individual modules. Bottom table shows number of miRNAs in each
module. Modules E, F, and K (depicted in bold) were characterized by the most significantly changed log2FC values (Q1-Q3 # 0) and contained
the highest proportion of miRNAs significantly altered in AD as revealed by the meta-analysis. C Barplot showing proportion of miRNAs
changed in AD patients based on meta-analysis in individual modules. E, F and K modules with most significantly increased proportions of
changed miRNAs in AD patients are emphasized in bold. Modules C, G, H and L exhibit least miRNA changes. D Heatmaps showing presence
of miRNAs from modules E, F and K in individual tissues (85[100%], 162 [95%] and 75 [93%]) of miRNAs were represented in the database).
Only 10 tissues with the highest average miRNA expressions (rpomm normalized counts) are displayed for each miRNA changed in AD. E The
top 10 most significantly enriched and neurodegeneration-related PANTHER knowledgebase forecast biological pathways based on targets of
miRNAs found inside or outside the brain in modules E, F, and K. F Sankey diagram showing targets known to be involved in the pathogenesis
of AD. MiRNAs with more than 3 related AD targets are displayed in the left panel. G Combined barplot of Vesiclepedia-based predicted

proportions of miRNAs found in extracellular vesicles (EVs) and harboring secretion-promoting EXO motifs in WmiRNACNA clusters. Red

frames indicate AD-related modules.

to accentuate CCKR, FAS and p38 MAPK signaling and Parkinson’s
disease (PD) pathways, and to reduce VEGF and PI3 kinase
signaling (Fig. 1D, Supplementary Table 1D). Key targets of “AD
miRNA” found likely to originate from outside the brain were
predicted to equally dysregulate insulin/IGF, Ras and interferon-y
signaling, apoptosis and AD, HD and PD pathways and to reduce
VEGF, CCKR, angiotensin I, interleukin, endothelin signaling and T
cell activation. Apart from Apolipoprotein E, many molecules
linked to the pathogenesis of AD including APP and tau, as well as
components of axonal transport, were all found among “AD
miRNA”" targets (Fig. 1E, Supplementary Table 1E). Independently
from their tissues of origin, miRNAs were projected to be enriched
in EXO motifs in AD (Fig. 1F, Supplementary Table 1F).

WmiRNACNA in AD

To identify networks of miRNAs that are changed in AD, we
developed WmiRNACNA by modifying WGCNA (in Methods).
Based on log, fold-changes, hierarchical clustering of 2650
miRNAs gave rise to 12 miRNA membership modules (Fig. 2A,
Supplementary Table 2A). Modules E, F and K showed average
log, fold-change values furthest from zero (Fig. 2B, Supplementary
Table 2B), and contained the highest percentages of “AD miRNAs"
previously found by meta-analysis (Fig. 2C, Supplementary
Table 2C). All miRNAs in these modules were upregulated. Key
targets of “AD module miRNAs” were predicted to impact the
same activities as targets of “AD miRNAs” identified by meta-
analysis including cytokine (E and F), RTK and estrogen signaling
(F) in addition to cell cycle regulation (E and K, Extended Data
fig. 6, Extended Data Table 6).

We next asked whether miRNAs in “AD modules” are found
predominantly in the brain. Only 21, 21 and 25% of E, F, and K
module miRNAs were previously described in the brain (Fig. 2D,
Supplementary Table 2D, Extended Data Table 2). The most
frequent targets of these “AD module miRNAs” were projected to
suppress p53, insulin/IGF, Ras, interferon-y and PI3 kinase
signaling, hypoxia-response via HIF activation, oxidative stress, B
cell activation as well as AD pathways (Fig. 2E, Supplementary
Table 2E). “AD module miRNAs” found outside the brain were
projected to reduce interleukin signaling and Rho GTPase
cytoskeletal regulation. Apart from Apolipoprotein E, all molecules
linked to the pathogenesis of AD including APP and tau as well as
components of the axonal transport, were found among “AD
miRNA module” targets (Fig. 2F, Supplementary Table 2F).
Projected frequency of miRNAs in EVs as well as enriched in
EXO motifs varied significantly between modules (Fig. 2G,
Supplementary Table 2G).

Key circulating miRNAs in AD

A total of 37 miRNAs were found significantly changed in AD
based on both meta-analysis and the WmiRNACNA (Extended
Data fig. 7, Table 2, Extended Data Table 7). Only 7 of these
miRNAs were previously linked to AD with targets including APP,

SPRINGER NATURE

ADAM10, BACE, and presenilin (Fig. 3A, Supplementary Table 3A).
Targets of these “AD miRNAs” were predicted to suppress axon
guidance, p53 pathway, Wnt and cadherin signaling, angiogen-
esis and Alzheimer’s disease-presenilin pathways (Fig. 3B, Sup-
plementary Table 3B). The other 30 miRNAs remain poorly
described in the context of AD. Their targets are projected to
center frequently around the CCKR signaling map and to most
commonly dysregulate insulin/IGF, p38 MAPK, Toll-receptor,
PDGF and the interleukin signaling pathways. The “AD miRNAs”
previously linked to AD showed the highest levels of expression
in liver and immune system related tissues, while poorly known
miRNAs in AD were found primarily in blood and the vestibulo-
cochlear complex with several orders of magnitude lower
expression levels (difference 10* rpmm, Fig. 3C, Supplementary
Table 3C). We last attempted to understand functional repercus-
sions of changes in these key circulating “AD miRNAs". Based on
Kyoto Encyclopedia of Genes and Genomes, all “AD miRNAs”
were predicted to play a dominant role in axon guidance and
cancer pathways (Fig. 3D, Supplementary Table 3D). In addition,
“AD miRNAs” previously linked to AD were predicted to
contribute to oxytocin signaling, adherent junctions, TGF(
signaling, longevity, hedgehog signaling, neurotransmitter sig-
naling and AD and neurodegeneration, while poorly described
“AD miRNAs” in AD were predicted to play roles in ErbB, hippo
and p53 signaling.

DISCUSSION

A major strength of this study is the rigor with which data have
been collected and analyzed. Given that many studies reporting
miRNA abnormalities in AD provide only data for significantly DE
miRNAs, there is a risk that the observed abnormalities in
individual miRNAs are biased by overestimating their significance
given the lack of data on instances where the miRNAs in question
did not show significant differences. To circumvent this potential
bias, this meta-analysis has investigated the pooled effect of
miRNA abnormalities in AD based only on studies that provided a
complete set of results either from DE analyses which include also
non-significantly DE miRNAs, or from a complete list of raw miRNA
expression data. This study used different meta-analytic
approaches, analyzing first the individual roles of the most
significant miRNAs in AD and then identifying modules of miRNAs
exhibiting similar behavior in AD. This multivariate approach
highlights key “AD miRNAs” and contributes to understanding AD
better. One potential limitation of the study is the inconsistency of
naming miRNAs in the original studies. Given the evolution of
miRNA nomenclature over time, for example the use of * and 3p/
5p refinements, the names of miRNAs in different studies may
differ, although sequence-wise they refer to the same miRNA. This
issue, however, cannot be resolved within the secondary analysis
without full access to sequence data and should therefore be kept
in mind when interpreting our results. In the future, it would be
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Table 2. The most relevant AD-related miRNAs derived from both meta-analyses.

miR-103a-3p miR-3927-5p miR-4731-3p miR-6751-3p miR-6867-3p
miR-122-5p miR-3973 miR-4804-3p miR-6773-3p miR-6890-3p
miR-2113 miR-4433b-5p miR-5096 miR-6777-3p miR-7109-3p
miR-3156-3p miR-4436b-5p miR-5584-3p miR-6808-5p miR-7152-5p
miR-3646 miR-4652-3p miR-5588-3p miR-6821-3p miR-8485
miR-3649 miR-4700-3p miR-659-3p miR-6830-5p

miR-3685 miR-4711-3p miR-6742-3p miR-6846-3p

miR-371b-3p miR-4713-5p miR-6743-5p miR-6866-3p

useful to implement tools for retrospective application of currently
valid miRNA nomenclature standards to earlier studies.

Using two meta-analyses, we identified a number of “AD
miRNAs". Surprisingly, many of these miRNAs have not yet been
characterized as AD-related, so their identification broadens our
horizons and opportunities in exploring the mechanisms of AD
and the role of these miRNAs. Several molecules previously linked
to the pathogenesis of AD have been identified among targets of
these “AD miRNAs". Observation that miRNAs target the entire Ap
pathway implicates circulating miRNAs directly in the pathogen-
esis of AD. Molecules involved in impaired axonal transport in AD
including molecular motors, besides microtubule interacting
proteins such as tau, have also been found among targets of
“AD miRNAs,” further supporting a role of miRNAs in AD.
Altogether, these results provide a comprehensive understanding
of the contribution of circulating miRNAs in the pathogenesis of
AD and, in addition, corroborate previously noted associations
between miRNAs and AD molecules [50]. Studies of mechanisms
underlying miRNA changes offer some evidence of dysregulated
Drosha [51] and Dicer [52]. Alternatively, given that most “AD
miRNAs" are enriched in EXO motifs and therefore preferentially
secreted, it might well be that miRNA defects occur at the level of
the endosomal/lysosomal pathway [53, 541. Significant further
work is needed to establish the mechanisms and pinpoint origins
underlying systemic circulating miRNA changes in AD.

Targets of “AD miRNAs” reveal involvement of most diverse
pathways in the pathogenesis of AD. Some of the targets are
involved in the cell cycle and death [55] as well as in cytokine [56],
estrogen [57] and insulin [58-60] signaling, which have all been
previously described in AD. Other targets, for example CCKR
[61-63], integrin [64], interferon-y [65] and p53 [66, 67] signaling
as well as angiogenesis [68] have hardly been accounted for in the
context of AD. These pathways represent knowledge gaps in our
understanding of AD. For example, miRNAs projected to
dysregulate p53 in AD might provide valuable clues in under-
standing the interactions between cellular senescence, AD and
cancer. Surprisingly, only a fraction of “AD miRNAs” has been
described in the brain and at the same time, most frequently as
relevant in several other tissues. This suggests that “AD miRNAs”"
belonging to different tissues of origin are functionally diverse in
AD. This is unexpected, considering AD is thought to be a
neurodegenerative disorder with etiology exclusive to the brain.
There are at least two plausible explanations of this finding. First,
AD pathology triggers initial miRNA changes in the brain and only
later in other tissues. And second, “AD miRNAs" from other tissues
are generated independently from the brain and contribute to AD
pathology. Both scenarios provide support to the view that AD is a
systemic disorder. In conclusion, the findings presented in this
study reveal novel circulating miRNAs altered in AD that
functionally not only recapitulate most well-established pathways
but also uncover several unaccounted-for pathways in AD and are
thus most informative about its pathogenesis. These findings offer
an unprecedented opportunity to develop a next generation of
biomarkers, and open novel avenues for design of AD therapies.
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